精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线l交椭圆于A,B两点,|AB|的最小值为3,且△ABF2的周长为8.
(1)求椭圆的方程;
(2)当直线l不垂直于x轴时,点A关于x轴的对称点为A′,证明直线A′B恒过定点,并求此定点坐标.

分析 (1)判断AB⊥x轴时,|AB|最小,推出$\frac{{2{b^2}}}{a}=3$,利用ABF2的周长为4a,求解a,b,得到椭圆的方程.
(2)设AB方程为y=k(x+1),A(x1,y1),B(x2,y2),A'(x1,-y1),联立直线与椭圆方程,利用韦达定理求出A'B的斜率,求解直线方程,利用直线系求解直线结果的定点.

解答 解:(1)因为AB是过焦点F1的弦,所以当AB⊥x轴时,|AB|最小,且最小值为$\frac{{2{b^2}}}{a}$,
由题意可知$\frac{{2{b^2}}}{a}=3$,再由椭圆定义知,△ABF2的周长为4a,所以$a=2,b=\sqrt{3}$,
所以椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$,
(2)设AB方程为y=k(x+1),A(x1,y1),B(x2,y2),A′(x1,-y1),
则$\left\{{\begin{array}{l}{y=k(x+1)}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,化简得(3+4k2)x2+8k2x+4k2-12=0
所以${x_1}+{x_2}=\frac{{-8{k^2}}}{{3+4{k^2}}}$①,${x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}$②
则${k}_{A′B}=\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$,∴A′B的方程为$y+{y_1}=\frac{{{y_2}+{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$.
化简有$y=\frac{{k({x_1}+{x_2})+2k}}{{{x_2}-{x_1}}}x-\frac{{2k{x_1}{x_2}+k({x_1}+{x_2})}}{{{x_2}-{x_1}}}$,
将①②代入可得$y=\frac{1}{{{x_2}-{x_1}}}({\frac{6k}{{3+4{k^2}}}x+\frac{24k}{{3+4{k^2}}}})=\frac{6k}{{(3+4{k^2})({x_2}-{x_1})}}({x+4})$,
所以直线A′B恒过定点(-4,0).

点评 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,直线系方程的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某公益活动为期三天,现要为6名志愿者安排相应的服务工作,每人工作一天,且第一天需1人工作,第二天需2人工作,第三天需3人工作,则不同的安排方式有60种.(请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如表提供的是两个具有线性相关的数据,现求得回归方程为$\widehat{y}$=0.7x+0.35,则t等于(  )
x3456
y2.5t44.5
A.4.5B.3.5C.3.15D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4位学生与2位教师坐在一排合影留念,教师不能坐在两端,且不能相邻,则不同的坐法种数有(  )
A.72B.48C.24D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x、y取值如表:
x014568
y1.3m5.66.17.49.3
从所得的散点图分析可知:y与x线性相关,且$\widehaty$=0.95x+1.45,则m=(  )
A.1.5B.1.55C.3.5D.1.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点为F1,P是双曲线右支上的点,若线段PF1与y轴的交点M恰好为线段PF1的中点,且|OM|=b,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设M,N分别为三棱锥P-ABC的棱AB,PC的中点,三棱锥P-ABC的体积记为V1,三棱锥P-AMN的体积记为V2,则$\frac{{V}_{2}}{{V}_{1}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.班主任想对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男女生各抽取多少位才符合抽样要求?
(2)随机抽出8位,他们的数学、地理成绩对应如表:
学生编号12345678
数学分数x6065707580859095
地理分数y7277808488909395
①若规定85分以上(包括85分)为优秀,在该班随机调查一位同学,他的数学和地理分数均为优秀的概率;
②根据如表,用变量y与x的相关系数或散点图说明地理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01),如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{{{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}^{\;}}^{\;}}$;回归直线的方程是:$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a,
其中:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\overline{y}$是xi对应的回归估计值.
参考数据:$\overline{x}$≈77.5,$\overline{y}$≈84.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈456.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈687.5,$\sqrt{1050}$≈32.4,$\sqrt{456.9}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,则该几何体的体积为12+8π.

查看答案和解析>>

同步练习册答案