5.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$y
i=9.32,$\sum_{i=1}^{7}$t
iy
i=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{u}-\overline{y})^{2}}}$,$\sum_{i=1}^{n}$(t
i-$\overline{t}$)(y
i-$\overline{y}$)=$\sum_{i=1}^{n}$t
iy
i-$\overline{y}$•$\sum_{i=1}^{n}$t
i-$\overline{t}$•$\sum_{i=1}^{n}$y
i+n$\overline{t}$•$\overline{y}$.
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t 中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{u}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{t}$.
