精英家教网 > 高中数学 > 题目详情
20.已知ω>0,函数f(x)=sin(ωx+$\frac{5π}{6}$)的一条对称轴为直线x=$\frac{π}{3}$,一个对称中心是($\frac{π}{12}$,0),则ω有(  )
A.最小值2B.最大值2C.最小值1D.最大值1

分析 由条件利用正弦函数的图象的对称性,可得$\frac{1}{4}$•$\frac{2π}{ω}$≤$\frac{π}{3}$-$\frac{π}{12}$,求得ω≥2,从而得出结论.

解答 解:∵函数f(x)=sin(ωx+$\frac{5π}{6}$)的一条对称轴为直线x=$\frac{π}{3}$,一个对称中心是($\frac{π}{12}$,0),
∴$\frac{1}{4}$•$\frac{2π}{ω}$≤$\frac{π}{3}$-$\frac{π}{12}$,则ω≥2,故ω有最小值,
故选:A.

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.小明有课外参考书若干本,其中有5本不同的外语参考书,4本不同的数学参考书,3本不同的语文参考书,他欲带参考书至图书馆阅读.
(1)若他从这些参考书中带1本去图书馆,有多少种不同的带法?
(2)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow a$=(sinα,cosα-2sinα),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,则$\frac{1+2sinαcosα}{{{{sin}^2}α-{{cos}^2}α}}$=$-\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有(  )
A.2个零点B.3个极值点C.2个极大值点D.3个极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,0≤x<4}\\{lo{g}_{2}(x-2),4≤x≤6}\end{array}\right.$,若存在x1,x2∈R,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1f(x2)的取值范围是[3,$\frac{256}{27}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若θ是第三象限角,且$\sqrt{1+sinθ}$=cos$\frac{θ}{2}$+sin$\frac{θ}{2}$,则$\frac{θ}{2}$是(  )
A.第二、四象限B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,AB=1,BC=2,∠B=$\frac{π}{3}$,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$
(Ⅰ)求(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(4$\overrightarrow{a}$+$\overrightarrow{b}$)的值;
(Ⅱ)求|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于锐角α,若sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则cos(α-$\frac{π}{3}$)=(  )
A.$\frac{2\sqrt{6}+1}{6}$B.$\frac{3-\sqrt{2}}{8}$C.$\frac{3+\sqrt{2}}{8}$D.$\frac{2\sqrt{3}-1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求由方程ex+y-sinxy=3确定的函数y对x的导数.

查看答案和解析>>

同步练习册答案