精英家教网 > 高中数学 > 题目详情
18.若函数$f(x)=\left\{\begin{array}{l}{({\frac{1}{2}})^{x-a}}-4x,x<1\\{log_3}({2x+2})-1,x≥1\end{array}\right.$有零点,则实数a的取值范围是(-∞,3).

分析 利用分段函数,通过x的范围,分别求解函数的零点,推出a的范围即可.

解答 解:∵当x≥1时,$f(x)={log_3}({2x+2})-1≥f(1)={log_3}\frac{4}{3}>0$,无零点;
∴当x<1时,函数$f(x)={({\frac{1}{2}})^{x-a}}-4x$是减函数,$f(x)={({\frac{1}{2}})^{x-a}}-4x$有零点,
即$(\frac{1}{2})^{1-a}-4<0$,解得a<3.
故答案为:(-∞,3).

点评 本题考查分段函数的应用,函数的零点问题,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x+2-x
(Ⅰ)试写出这个函数的性质(不少于3条,不必说明理由),并作出图象;
(Ⅱ)设函数g(x)=4x+4-x-af(x),求这个函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆${C_1}:{x^2}+{y^2}=1$,圆${C_2}:{(x-3)^2}+{(y-4)^2}=9$,则圆C1与圆C2的位置关系是(  )
A.内含B.外离C.相交D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x3+mx,m∈R,若函数y=f(x)的图象在点(1,f(1))处的切线与x轴平行,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$|\overrightarrow a|=3,|\overrightarrow{b|}=4$,且$|\overrightarrow a|$与$|\overrightarrow{b|}$为不共线的平面向量.
(1)若$(\overrightarrow a+k\overrightarrow b)⊥(\overrightarrow a-k\overrightarrow b)$,求k的值;
(2)若$(k\overrightarrow a-4\overrightarrow b)$∥$(\overrightarrow a-k\overrightarrow b)$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={1,2,3,4,5},集合A={4,5},则∁UA=(  )
A.{5}B.{4,5}C.{1,2,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-4,0)的动直线l与圆A相交于M,N两点.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{11}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,两人分别从A村出发,其中一人沿北偏东60°方向行走了1km到了B村,另一人沿北偏西30°方向行走了$\sqrt{3}$km到了C村,问B、C两村相距多远?B村在C村的什么方向上?

查看答案和解析>>

同步练习册答案