精英家教网 > 高中数学 > 题目详情
16.在△ABC中,AB=2,BC=3,D是三角形内一点,CD=2,使∠B+∠ADC=180°,问求当∠B为何值时,△ABC和△ADC面积之差最大?(∠B=$\frac{π}{4}$时,面积之差最大)

分析 求出S△ABC=$\frac{1}{2}×2×3$sinB=3sinB,再求出AD=-4cosB+3,则可求出两三角形的面积差表达式为4cosBsinB=2sin2B,即可得出结论.

解答 解:根据正弦定理知S△ABC=$\frac{1}{2}×2×3$sinB=3sinB
根据余弦定理可知AC2=13-12cosB
且可知AD2+CD2+2AD•CD•cosB=AC2
联立求出AD=-4cosB+3,
则可求出两三角形的面积差表达式为4cosBsinB=2sin2B≤2
当且仅当B=45°时,取等号,
所以B=45°时,面积之差最大.

点评 这题主要考查余弦定理,利用已知两边和夹角求第三边与面积,另外还设计了一元二次方程的求根方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在四边形ABCD中,AB=$\sqrt{3}$,BC=CD=DA=1,△ABD和△BCD的面积分别为m,n.
(1)若tanA=$\sqrt{2}$,求角C的大小;
(2)求m2+n2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,AB=1,AC=2,∠A=120°,点O是△ABC的外心,存在实数λ,μ,使$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则(  )
A.λ=$\frac{5}{4}$,μ=$\frac{3}{4}$B.λ=$\frac{4}{3}$,μ=$\frac{5}{6}$C.λ=$\frac{5}{3}$,μ=$\frac{7}{6}$D.λ=$\frac{4}{3}$,μ=$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的高与底面直径的比为(  )
A.$\frac{a}{b}$B.$\frac{{a}^{2}}{b}$C.$\frac{b}{a}$D.$\frac{{b}^{2}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在正四面体S-ABC(四个面都是等边三角形)中,点D是棱AB的中点,则异面直线SD和BC所成角的余弦值是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f(${\frac{1}{a_n}}$),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求满足Tn≤-60的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=ax3-x2+$\frac{1}{3}$x+1在(-∞,+∞)上恒为单调递增函数,则实数a的取值范围[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,左右焦点分别为F1,F2,点P的坐标为(2,$\sqrt{3}$),点F2在线段PF1的垂直平分线上.
(1)求椭圆E的方程;
(2)设l1,l2是过点G($\frac{3}{2}$,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N.证明:直线MN恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与双曲线x2-2y2=2有相同渐近线,且过点M(2,-2)的双曲线的标准方程(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1或$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案