精英家教网 > 高中数学 > 题目详情
某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).
(Ⅰ)应收集多少位女生的样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考点:独立性检验,频率分布直方图
专题:应用题,概率与统计
分析:(Ⅰ)根据15000人,其中男生10500人,女生4500人,可得应收集多少位女生的样本数据;
(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,即可求出该校学生每周平均体育运动时间超过4小时的概率;
(Ⅲ)写出2×2列联表,求出K2,与临界值比较,即可得出结论.
解答: 解:(Ⅰ)300×
4500
15000
=90,∴应收集90位女生的样本数据;

(Ⅱ)由频率分布直方图可得1-2×(0.100+0.025)=0.75,
∴该校学生每周平均体育运动时间超过4小时的概率为0.75;

(Ⅲ)由(Ⅱ)知,300位学生中有300×0.75=225人每周平均体育运动时间超过4小时,75人每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:
   男生女生总计
每周平均体育运动时间不超过4小时  453075
每周平均体育运动时间超过4小时  16560225
总计21090300
∴K2=
300×(45×60-165×30)2
210×90×75×225
≈4.762>3.841,
∴有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
点评:本题主要考查独立性检验等基础知识,考查数形结合能力、运算求解能力以及应用用意识,考查必然与或然思想等,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在区间[-2,3]上随机选取一个数X,则X≤1的概率为(  )
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n-1
4n
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).
(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn
(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-
1
ln2
,求数列{
an
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(4x2+4ax+a2
x
,其中a<0.
(1)当a=-4时,求f(x)的单调递增区间;
(2)若f(x)在区间[1,4]上的最小值为8,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)在表格中作出这些数据的频率分布直方图;

(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc;
(2)求证:
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是
 
(单位:元)

查看答案和解析>>

同步练习册答案