精英家教网 > 高中数学 > 题目详情
1.已知i是虚数单位,则$\frac{(-1+i)(1+i)}{{i}^{3}}$=(  )
A.-2iB.2iC.-iD.i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{(-1+i)(1+i)}{{i}^{3}}$=$\frac{-2}{-i}=\frac{-2i}{-{i}^{2}}=-2i$,
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.直线l1:y=kx-1与直线l2:x+y-1=0的交点位于第一象限则k的范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前五项依次为$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5},\frac{{\sqrt{6}}}{3}$,请参考前四项归纳猜想出一个通项公式,且第五项也满足猜想,你的猜想结果是an=$\sqrt{\frac{n-1}{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(ωx+2φ)-2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,$\frac{3π}{2}$)上单调递减,则ω的取值范围是(  )
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1]D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB+bcosA=$\sqrt{3}$,△ABC的外接圆面积为π,则△ABC面积的最大值为$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=2sinωx(ω>0)在[-$\frac{π}{3}$,$\frac{π}{4}$]上的最小值是-2,但最大值不是2,则ω的取值范围是(  )
A.(0,2)B.[$\frac{3}{2}$,2)C.(0,$\frac{3}{2}$]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:
支持希拉里支持特朗普合计
男员工
女员工
合计
(Ⅱ)根据表格中的数据,是否有95%的把握认为投票结果与性别有关?
附:
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)当a=2时,解关于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4对任意x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.

查看答案和解析>>

同步练习册答案