精英家教网 > 高中数学 > 题目详情
若不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,求实数a的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:先把已知等式转化为a≤x+2lnx+
3
x
,设g(x)=x+2lnx+
3
x
,x∈(0,+∞),对函数进行求导,利用导函数的单调性求得函数的最小值,只要a小于或等于最小值即可.
解答: 解:2xlnx≥-x2+ax-3对x∈(0,+∞),
等价于a≤x+2lnx+
3
x

令g(x)=x+2lnx+
3
x
,x∈(0,+∞),
g′(x)=1+
2
x
-
3
x2
=
(x+3)(x-1)
x2

当0<x<1时,g′(x)<0,g(x)单调减,
当x=1时,g′(x)=0,
当x>1时,g′(x)>0,g(x)单调增,
∴g(x)min=g(1)=4,
∴a≤4.
点评:本题主要考查了利用导函数求最值的问题.考查了学生对函数基础知识的理解和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个盒子中装有4张卡片,每张卡片上写一个数字,数字分别是1?2?3?4.现从盒子中随机抽取卡片.若一次抽取3张卡片,求3张卡片上数字之和大于7的概率(  )
A、
7
24
B、
11
24
C、
7
16
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=|x+7|+|x-1|
(1)解不等式f(x)≥10
(2)g(x)=
1
f(x)+m
的定义域为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,cosx),
n
=(
3
sinx,sinx),函数f(x)=
m
n

(1)求f(x)的最小正周期和单调递增区间;
(2)求f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,an=
Sn
n
+2(n-1)
(n∈N+).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列{
1
anan+1
}的前n项和为Tn,证明:
1
5
≤Tn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(1-a)x2-a(a+2)x+b,若函数f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<β<
π
4
<α<
π
2
,cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,求sin
α+β
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(4
4
1
x
+
3x2
n展开式中的倒数第三项的二项式系数为45,则n=
 

查看答案和解析>>

同步练习册答案