精英家教网 > 高中数学 > 题目详情
设f(x)=
x2-x,x<0
log2(x+1),x≥0
,则不等式f(x)≥2的解集为(  )
A、(-∞,1]∪[3,+∞)
B、(-∞,-1]∪[2,+∞)
C、[3,+∞)
D、(-∞,-1]
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:由题意可得
x<0
x2-x≥2
①,或
x≥0
log2(x+1)≥2
②,分别求得①和②的解集,再取并集,即得所求.
解答: 解:由题意可得
x<0
x2-x≥2
 ①,或 
x≥0
log2(x+1)≥2
 ②.
解①求得x≤-1,解②求得 x≥3,
综上可得,x≤-1,或x≥3,
故选:A.
点评:本题主要考查对数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+
2
3
,则(  )
A、an=2n-1
B、an=2n+1
C、an=
5
3
,n=1
2n-1,n≥2
D、an=
5
3
,n=1
2n+1,n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

tan
2
3
π的值为(  )
A、
3
3
B、-
3
3
C、
3
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

工人月工资y(元)依劳动生产率x(千元)变化的回归方程为
?
y
=50+60x,下列判断正确的是(  )
A、劳动生产率为1000元时,工资为110元
B、劳动生产率提高1000元,则工资提高60元
C、劳动生产率提高1000元,则工资提高110元
D、当月工资为210元时,劳动生产率为1500元

查看答案和解析>>

科目:高中数学 来源: 题型:

在数学拓展课上,老师定义了一种运算“*”:对于n∈N,满足以下运算性质:①2*2=1;②(2n+2)*2=(2n*2)+3.则1020*2的数值为(  )
A、1532B、1533
C、1528D、1536

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,四条侧棱长均相等且BD交AC于点O.
(1)求证:AB∥平面PCD;
(2)求证:PO⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面△ABC为直角三角形,∠ACB=
π
2
,顶点C1在底面△ABC内的射影是点B,且AC=BC=BC1=3,点T是平面ABC1内一点.
(1)若T是△ABC1的重心,求直线A1T与平面ABC1所成角;
(2)是否存在点T,使TB1=TC且平面TA1C1⊥平面ACC1A1,若存在,求出线段TC的长度,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
ax2+2ax+1
的定义域为R.
(1)求a的取值范围.
(2)若函数的最小值为
2
2
,解关于x的不等式x2-x-a2-a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=
4
anan+1
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案