精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}}{19},x>2}\\{f(x+1),x≤2}\end{array}\right.$,阅读如图所示的程序框图,若输入a的值为f(1)的值,则输出的k值是(  )
A.9B.10C.11D.12

分析 根据程序框图的流程,计算运行n次的结果,根据输入a=$\frac{9}{19}$,判断n满足的条件,从而求出输出的k值.

解答 解:∵f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}}{19},x>2}\\{f(x+1),x≤2}\end{array}\right.$,
∴a=f(1)=f(3)=$\frac{9}{19}$.
由程序框图知第一次运行s=0+$\frac{1}{1×3}$,k=2;
第二次运行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$,k=3;

∴第n次运行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$×(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
当输入a=$\frac{9}{19}$时,由n>a得n>9,程序运行了10次,输出的k值为11.
故选:C.

点评 本题考查了直到型循环结构的程序框图,由程序框图判断程序运行的功能,用裂项相消法求和是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足a1=1,an+1-an=cos$\frac{nπ}{3}$,则a2016=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三角形ABC中,三边长分别是a,b,c,面积S=a2-(b-c)2,b+c=8,则S的最大值是$\frac{64}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a>0,b>0,ab=8,则log2a•log2(2b)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=168,设数列{an}满足$2{a_1}+{2^2}{a_2}+{2^3}{a_3}+…+{2^n}{a_n}={2^{b_n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,已知圆M:(x-3)2+(y-3)2=4,六边形ABCDEF为圆M的内接正六边形,N为AB的中点,当正六边形ABCDEF绕圆心M转动时,$\overrightarrow{MN}•\overrightarrow{OC}$的最大值是3$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x0为函数f(x)=sinπx的零点,且满足|x0|+|f(x0+$\frac{1}{2}$)|<33,则这样的零点有(  )
A.61个B.63个C.65个D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),动点P从点P0(-1,2)开始沿着与向量$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$|;另一动点Q从点Q0(-2,-1)开始沿着与向量3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|,设P、Q在t=0秒时刻分别在P0、Q0处.
(1)经过多长时间|PQ|最小?求出最小值;
(2)经过多长时间后$\overrightarrow{PQ}$⊥$\overrightarrow{{P}_{0}{Q}_{0}}$,求出t值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a,1),第三组是(1,a(1+2a),2a,a(2a+1),1)…,在每一组的相邻两个数组之间插入这两个数的和的a倍得到下一组,其中a∈(0,$\frac{1}{4}$),设第n组有an个数,且这an个数的和为Sn(n∈N*).
(1)求an和Sn
(2)求证:$\frac{{a}_{1}-1}{{S}_{1}}$+$\frac{{a}_{2}-1}{{S}_{2}}$+…+$\frac{{a}_{n}-1}{{S}_{n}}$≥$\frac{n}{2}$.

查看答案和解析>>

同步练习册答案