精英家教网 > 高中数学 > 题目详情
9.设Sn是数列{an}的前n项和,n∈*,若a1=1,Sn-1+Sn=3n2+2(n≥2)则S101的值为(  )
A.15601B.15599C.15449D.15451

分析 当n≥2时,Sn-1+Sn=3n2+2,${S}_{n}+{S}_{n+1}=3(n+1)^{2}$+2,可得an+1+an=6n+3,可得数列{an+an+1}(n≥2)为等差数列,首项为a2+a3=15,公差为12.利用等差数列的前n项和公式即可得出.

解答 解:当n≥2时,Sn-1+Sn=3n2+2,${S}_{n}+{S}_{n+1}=3(n+1)^{2}$+2,可得an+1+an=6n+3,
∴数列{an+an+1}(n≥2)为等差数列,首项为a2+a3=15,公差为12.
∴S101=a1+(a2+a3)+(a4+a5)+…+(a100+a101
=1+(6×2+3)+(6×4+3)+…+(6×100+3)
=1+$\frac{50(15+603)}{2}$
=15451.
故选:D.

点评 本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知e是自然对数的底数,函数f(x)=ex(x2+ax-2)在区间(-3,-2)内单调递减,则实数a的取值范围为[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=2cosθ.
(1)求直线l和曲线C的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[0,4]上随机取两个数x1,x2,则0≤x1x2≤4的概率是(  )
A.$\frac{1-ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln4}{4}$D.$\frac{31}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的偶函数.其导函数为f′(x),若f(x)+xf′(x)<0,且f(x+1)=f(3-x),f(2015)=2,则不等式xf(x)<2的解集为(  )
A.(-∞,2015)B.(2015,+∞)C.(-∞,0)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图的程序框图,若输入的a=209,b=76,则输出的a是(  )
A.19B.3C.57D.76

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2-b2)=2accosB+bc.
(Ⅰ)求A;
(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=$\frac{π}{2}$,求tanC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某人骑车以a km/h的速度向东行驶,感到风从正北方向吹来,而当速度为2a km/h时,感到风从东北方向吹来,试求实际风速和方向.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,且a1=2,a2+a3=13,则a4+a5+a6=(  )
A.45B.43C.40D.42

查看答案和解析>>

同步练习册答案