精英家教网 > 高中数学 > 题目详情
在正方形ABCD-A1B1C1D1中,M,N,P分别是BC,CC1,CD的中点,求证:A1P⊥平面MDN.
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:建立空间直角坐标系,得到所需向量的坐标,利用向量数量积为0,得到直线垂直.
解答: 证明:如图建立空间直角坐标系

则D(0,0,0,),A1(2,0,2),M(1,2,0),N(0,2,1),P(0,1,0),
所以
A1P
=(-2,1,-2),
MN
=(-1,0,1),
DN
=(0,2,1),
所以
A1P
MN
=2+0+2=0,
A1P
DN
=0+2-2=0,
所以A1P⊥MN,A1P⊥DN,
所以A1P⊥平面MND.
点评:本题开车了正方体为载体的线面垂直的判定定理的运用;在正方体中,线面关系的判断经常利用向量法解答,体现了向量的工具性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)中,离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线和原点的距离为
3
2

(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线l:y=kx+2(k≠0)与椭圆交于C,D两点,是否存在k的值,使以CD为直径的圆恰过点E?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如如,则这个几何体为(  )
A、圆柱B、空心圆柱C、圆锥D、圆

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1、F2,其上的动点M到一个焦点的距离最大为3,点M对F1、F2的张角最大为60°.
(1)求椭圆C的方程;
(2)设椭圆C在x轴上的两个顶点分别为A、B,点P是椭圆C内的动点,且PA•PB=PO2,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)的二次项系数为a,且不等式f(x)-x<0的解集为(x1,x2),其中x1,x2满足0<x1<x2
1
a
,当x∈(x1,x2)时,求证x1<f(x)<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[0,1]时,求函数f(x)=x2+(2-6a)x+3a2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+b,(a,b∈R)
(1)若函数y=f(x)的图象切x轴于点(2,0),求a.b的值;
(2)设函数y=f(x)(x∈(0,1)) 的图象上任意一点的切线斜率为k,试求|k|≤1的充要条件;
(3)若函数y=f(x)的图象上任意不同的两点的连线斜率小于1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C的对边分别为a、b、c,且acosC=(2b-c)cosA.
(Ⅰ)求∠A的大小;
(Ⅱ)若△ABC的外接圆半径为
2
,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:实数x满足x2-4ax+3a2>0其中a<0,命题q:实数x满足x2-x-6≤0,且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案