【题目】如图,在四棱锥
中,
、
、
均为等边三角形,
.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值.
【答案】解:(Ⅰ)因为
,
,
为公共边,
所以
,
所以
,又
,
所以
,且
为
中点.
又
,所以
,
又
,所以
,结合
,
可得
,
所以
,
即
,又
,
故
平面
,又
平面
,所以
.
又
,所以
平面
.
(Ⅱ)以
为原点,建立空间直角坐标系
如图所示,![]()
不妨设
,易得
,
,
则
,
,
,
,
所以
,
,
,
设平面
的法向量为
,则
,即
,解得
,
令
得
,
设直线
与平面
所成角为
,则
,
所以
与平面
所成角的正弦值为 ![]()
【解析】(Ⅰ)根据题目中所给的条件的特点,由△ABD和△CBD相似,可得∠ABD=∠CBD,AC⊥BD,即可得PO⊥AC,即PO⊥OB,又PO⊥BD.最后利用线面垂直的判定即可证得结论.
(Ⅱ)根据题意,以O为原点,建立空间直角坐标系O-xyz,求出平面PBC的法向量,利用向量夹角公式求解即可.
科目:高中数学 来源: 题型:
【题目】我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为( ) ![]()
A.3.119
B.3.126
C.3.132
D.3.151
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ) 若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ) 在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知任意角
以坐标原点
为顶点,
轴的非负半轴为始边,若终边经过点
,且
,定义:
,称“
”为“正余弦函数”,对于“正余弦函数
”,有同学得到以下性质:
①该函数的值域为
; ②该函数的图象关于原点对称;
③该函数的图象关于直线
对称; ④该函数为周期函数,且最小正周期为
;
⑤该函数的递增区间为
.
其中正确的是__________.(填上所有正确性质的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|.
(Ⅰ) 解不等式f(x+8)≥10﹣f(x);
(Ⅱ) 若|x|>1,|y|<1,求证:f(y)<|x|f(
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和为Sn , 且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com