精英家教网 > 高中数学 > 题目详情
4.△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C满足A<B<C,a2+c2-b2=ac.
(1)求角B的大小;
(2)若$tanA=\frac{{\sqrt{2}}}{2},c=\sqrt{3}$,求△ABC的面积.

分析 (1)由已知利用余弦定理可求cosB的值,结合B为三角形内角,利用特殊角的三角函数值可求B的值.
(2)由已知利用同角三角函数基本关系式可求sinA,cosA,根据三角形内角和定理,两角和的正弦函数公式可求sinC的值,利用正弦定理可求a的值,根据三角形面积公式即可计算得解.

解答 解:(1)∵a2+c2-b2=ac,
∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{1}{2}$,
又∵B是三角形的内角,
∴$B=\frac{π}{3}$;
(2)∵$tanA=\frac{{\sqrt{2}}}{2},A<B<C$,
∴$sinA=\frac{{\sqrt{3}}}{3},cosA=\frac{{\sqrt{6}}}{3}$,
∴$sinC=sin({A+B})=sin({A+\frac{π}{3}})=sinAcos\frac{π}{3}+cosAsin\frac{π}{3}=\frac{{\sqrt{3}+3\sqrt{2}}}{6}$,
∵$c=\sqrt{3},\frac{a}{sinA}=\frac{c}{sinC}$,
∴$a=\frac{2}{5}({3\sqrt{2}-\sqrt{3}})$,
∴${S_{△ABC}}=\frac{1}{2}acsinB=\frac{3}{10}({3\sqrt{2}-\sqrt{3}})$.

点评 本题主要考查了余弦定理,特殊角的三角函数值,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过F2作x轴的垂线与双曲线交于A、B两点,G是△ABF1的重心,且$\overrightarrow{GA}$•$\overrightarrow{{F}_{1}B}$=0,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}x-y≤1\\ 2x+y≤5\\ x≥1\end{array}\right.$,则z=3x+y的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,则tan(α+$\frac{π}{4}$)=(  )
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.二手车经销商小王对其所经营的A型号二手汽车的使用年数x与销售价格y(单位:万元/辆)进行整理,得到如下数据:
使用年数x234567
售价y201286.44.43
z=lny3.002.482.081.861.481.10
下面是z关于x的折线图:

(1)由折线图可以看出,可以用线性回归模型拟合z与x的关系,请用相关数加以说明;
(2)求y关于x的回归方程并预测某辆A型号二手车当使用年数为9年时售价约为多少?($\widehat{b}$、$\widehat{a}$小数点后保留两位有效数字).
(3)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?
参考公式:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$.
参考数据:
$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=187.4,$\sum_{i=1}^{6}{x}_{i}{z}_{i}$=47.64,$\sum_{i=1}^{6}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}}$=13.96,
$\sqrt{\sum_{i=1}^{6}({z}_{i}-\overline{z})^{2}}$=1.53,ln1.46≈0.38,ln0.7118≈-0.34.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x0∈(-∞,0),2x0<3x0,命题$q:?x∈({0,\frac{π}{2}}),sinx<x$,则下列命题中真命题是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=x2-2x+m,在x∈[0,3]上的最大值为1,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,若目标函数z=a|x|+2y的最小值为-6,则实数a等于(  )
A.2B.1C.-2D.-1

查看答案和解析>>

同步练习册答案