分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:设z=x-2y,则y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A(0,$\frac{3}{2}$)时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,
此时z=-2×$\frac{3}{2}$=-3,
直线y=$\frac{1}{2}x-\frac{z}{2}$,过点B时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此时z最大,
由$\left\{\begin{array}{l}{2x-6y=3}\\{x+2y=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{12}{5}}\\{y=\frac{3}{10}}\end{array}\right.$.,即B($\frac{12}{5}$,$\frac{3}{10}$).
代入目标函数z=x-2y,
得z=$\frac{12}{5}$-2×$\frac{3}{10}$=$\frac{9}{5}$.
∴目标函数z=x-2y的最小值是$\frac{9}{5}$.
即-3≤z≤$\frac{9}{5}$,
故答案为:[-3,$\frac{9}{5}$].
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1或-1 | C. | $\sqrt{3}$ | D. | $\sqrt{3}$或-$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{4}{27}$ | C. | $\frac{9}{64}$ | D. | $\frac{3}{64}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | 2012 | C. | 2014 | D. | 2015 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com