精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
1
2
AD,E,F分别为线段AD,PC的中点.
(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离,立体几何
分析:(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;
(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.
解答: 证明:(Ⅰ)连接CE,则
∵AD∥BC,BC=
1
2
AD,E为线段AD的中点,
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA?平面BEF,OF?平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD?平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.
点评:本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=
5
4
x0,x0=(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=
1
2
n2+
1
2
n.数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,
π
2
].
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线l:y=
3
x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=e-5x+2在点(0,3)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y).则|PA|•|PB|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
1
x
-x26的展开式中,含x-3项的系数等于
 
.(结果用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3
2
sin2x+cos2x的最小正周期为
 

查看答案和解析>>

同步练习册答案