分析 (1)由PA⊥平面ABC,得BC⊥PA,由∠ABC=90°,得BC⊥AB,从而可证BC⊥平面PAB,即可证明平面PAB⊥平面PBC;
(2)由BC⊥平面PAB,AE?平面PAB,可得BC⊥AE,由AE⊥PB于E,PB∩BC=B,得AE⊥平面PBC,从而可证平面AEF⊥平面PBC;
(3)由AE⊥平面PBC,得AE⊥PC,由AF⊥PC,AF∩AE=A,得PC⊥平面AEF,从而可证平面AEF⊥平面PAC.
解答 证明:(1)∵PA⊥平面ABC,∴BC⊥PA
∵∠ABC=90°,∴BC⊥AB
∵PA∩AB=A
∴BC⊥平面PAB,
∵BC?平面PBC,
∴平面PAB⊥平面PBC;
(2)∵BC⊥平面PAB,AE?平面PAB
∴BC⊥AE
∵AE⊥PB于E,PB∩BC=B
∴AE⊥平面PBC,
∵AE?平面AEF,
∴平面AEF⊥平面PBC
(3)∵AE⊥平面PBC
∴AE⊥PC
∵AF⊥PC,AF∩AE=A
∴PC⊥平面AEF
∵PC?平面PAC
∴平面AEF⊥平面PAC.
点评 本题主要考查了平面与平面垂直的判定,直线与平面垂直的判定,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | ($\sqrt{2}$,2) | C. | ($\sqrt{2}$,$\sqrt{3}$) | D. | ($\sqrt{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${C}_{6}^{3}{C}_{4}^{2}$ | B. | ${A}_{6}^{3}{A}_{4}^{2}$ | C. | ${C}_{6}^{3}{C}_{4}^{2}{A}_{5}^{5}$ | D. | $({C}_{6}^{3}+{C}_{4}^{2}){A}_{5}^{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (1,2] | C. | (-∞,0]∪[2,+∞) | D. | (-∞,0]∪(1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com