精英家教网 > 高中数学 > 题目详情
16.设全集U=R,集合A={x|1<2x<4},B={x|log2x>0},则(∁UA)∩B=(  )
A.[2,+∞)B.(1,2]C.(-∞,0]∪[2,+∞)D.(-∞,0]∪(1,+∞)

分析 利用对数与指数函数的性质分别求出A与B中不等式的解集确定出A与B,找出A补集与B的交集即可.

解答 解:由A中不等式变形得:20=1<2x<4=22,即0<x<2,
∴A=(0,2),
∵全集U=R,∴∁UA=(-∞,0]∪[2,+∞),
由B中不等式变形得:log2x>0=log21,得到x>1,即B=(1,+∞),
则(∁UA)∩B=[2,+∞),
故选:A.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求证:
(1)平面PAB⊥平面PBC;
(2)平面AEF⊥平面PBC;
(3)平面AEF⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(1)在平面直角坐标系中,求曲线$C:\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)的普通方程.
(2)在极坐标系中,求点(2,$\frac{π}{6}$)到直线ρsinθ=2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用二分法研究函数f(x)=x5+8x3-1的零点时,第一次经过计算f(0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为(  )
A.(0,0.5)f(0.125)B.(0.5,1)f(0.25)C.(0.5,1)f(0.75)D.(0,0.5)f(0.25)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系正确的是(  )
A.0∉NB.0•$\overrightarrow{AB}$=0
C.cos0.75°>cos0.75D.lge>(lge)2>lg$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,则下列四个结论错误的是(  )
A.存在实数k,使方程恰有2个不同的实根
B.存在实数k,使方程恰有3个不同的实根
C.存在实数k,使方程恰有5个不同的实根
D.存在实数k,使方程恰有8个不同的实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)椭圆的离心率为$\frac{1}{2}$,焦点是(-3,0),(3,0),求该椭圆方程;
(2)双曲线焦点在x轴上,c=6,且过点A(-5,2),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列四个关于圆锥曲线的命题:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
②从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
③双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$有相同的焦点;
④关于x的方程x2-mx+1=0(m>2)的两根可分别作为椭圆和双曲线的离心率.
其中正确的命题是②④.(填上你认为正确的所有命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,满足$\frac{1}{tan\frac{C}{2}}$+tan$\frac{C}{2}$=$\frac{4\sqrt{3}}{3}$
(Ⅰ)求角C的大小;
(Ⅱ)已知△ABC不是钝角三角形,且c=2$\sqrt{3}$,sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

同步练习册答案