精英家教网 > 高中数学 > 题目详情
20.设实数x,y满足$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+3y的最小值为(  )
A.-6B.-3C.5D.27

分析 画出满足约束条件表示的平可行域,然后分析平面区域里各个角点,然后将其代入z=x+3y中,求出最小值即可.

解答 解:满足约束条件的可行域如下图示:

z=x+3y的最小值就是直线在y轴上的截距的$\frac{1}{3}$倍,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得A(3,-3),
由图可知,z=x+3y经过的交点A(3,-3)时,
Z=x+3y有最小值-6,
故选:A.

点评 在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.不等式ax2+5x-2>0的解集是{x|$\frac{1}{2}$<x<2},则关于x的不等式ax2-5x+a2-1>0的解集为(  )
A.(-∞,-$\frac{3}{2}$)∪(1,+∞)B.(-$\frac{3}{2}$,1)C.(-∞-3)∪($\frac{1}{2}$,+∞)D.(-3,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲罐中有4个红球,3个白球和3个黑球;乙罐中有5个红球,3个白球和2个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1、A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,下列的结论:
①P(B)=$\frac{1}{2}$;
②P(B|A1)=$\frac{6}{11}$;
③事件B与事件A1不相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关,
其中正确结论的序号为②③④.(把正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若cosα+sinα=$\frac{2}{3}$,则$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值为(  )
A.$\frac{5}{9}$B.0C.-$\frac{5}{18}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出函数f(x)=a2x-1+2(a为常数,且a>0,a≠1),无论a取何值,函数f(x)恒过定点P,则P的坐标是(  )
A.(0,1)B.(1,2)C.(1,3)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.命题“?x0∈R,2${\;}^{{x}_{0}}$=x0+1.”的否定是?x∈R,2x≠x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对甲、乙两个班级的某次数学成绩进行统计,按照大于等于85分为优秀,85分以下为非优秀,得到如下所示的列联表:
 优秀非优秀总计
甲班10b 
乙班c30 
总计  105
已知在全部的105人中随机抽取1人,成绩优秀的概率为$\frac{2}{7}$.
(1)求b,c的值;
(2)根据表闻表中的数据,运用独立检验的思想方法分析:学生的数学成绩与班级是否有关系?并说明理由.
附:参考公式与临界值表:K2=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K00.1000.0500.0250.0100.001
K02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线3x+4y+m=0与曲线ρ2-2ρcosθ+4ρsinθ+4=0没有公共点,则实数m的取值范围是(-∞,0)∪(10,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出命题“若a,b都是偶数,则a+b是偶数”的逆命题、否命题及逆否命题,并判断它们的真假.

查看答案和解析>>

同步练习册答案