| A. | -6 | B. | -3 | C. | 5 | D. | 27 |
分析 画出满足约束条件表示的平可行域,然后分析平面区域里各个角点,然后将其代入z=x+3y中,求出最小值即可.
解答 解:满足约束条件的可行域如下图示:![]()
z=x+3y的最小值就是直线在y轴上的截距的$\frac{1}{3}$倍,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得A(3,-3),
由图可知,z=x+3y经过的交点A(3,-3)时,
Z=x+3y有最小值-6,
故选:A.
点评 在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{3}{2}$)∪(1,+∞) | B. | (-$\frac{3}{2}$,1) | C. | (-∞-3)∪($\frac{1}{2}$,+∞) | D. | (-3,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}$ | B. | 0 | C. | -$\frac{5}{18}$ | D. | -$\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (1,3) | D. | ($\frac{1}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | b | |
| 乙班 | c | 30 | |
| 总计 | 105 |
| P(K2≥K0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com