精英家教网 > 高中数学 > 题目详情
3.执行如图的程序框图,则输出的 A=(  )
A.$\frac{70}{29}$B.$\frac{29}{12}$C.$\frac{29}{70}$D.$\frac{169}{70}$

分析 解答算法框图的问题,要依次执行各个步骤,特别注意循环结构的终止条件,本题中是i=4就终止循环,即可计算得到结果.

解答 解:模拟执行程序,可得
i=0,A=2
执行循环体,A=$\frac{5}{2}$,i=1
不满足条件i≥4,执行循环体,A=$\frac{12}{5}$,i=2
不满足条件i≥4,执行循环体,A=$\frac{29}{12}$,i=3
不满足条件i≥4,执行循环体,A=$\frac{70}{29}$,i=4
满足条件i≥4,退出循环,输出A的值为$\frac{70}{29}$.
故选:A.

点评 本题考查了循环结构、流程图的识别、条件框等算法框图的应用,还考查了对多个变量计数变量、累加变量的理解与应用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若函数y=x+$\frac{1}{2x}+t$(x>0)有两个零点,则实数t的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(-4,0),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为(  )
A.4B.-4C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设z=$\frac{2i}{1+i}$(i是虚数单位),则z的模是(  )
A.iB.1C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|0≤x≤2},集合B={x|y=$\sqrt{x-1}$},则A∩B=(  )
A.{x|1<x<2}B.{x|1≤x≤2}C.{x|1≤x<2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是一次函数,它的图象过点(3,5),又f(2),f(5),15成等差数列.若数列{an}满足an=f(n)(n∈N,n>0).
(I)设数列{an}的前n项的和为Sn,求S2016
(Ⅱ)设数列{bn}满足bn=an•${2^{\frac{{{a_n}+1}}{2}}}$,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为$\frac{π}{2}$.
(Ⅰ)求ω的值及函数f(x)的定义域;
(Ⅱ)若f($\frac{α}{2}$)=3,求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.编辑一个计算机自动执行程序:1Φ1=2,mΦn=k,(m+1)Φn=k-1,mΦ(n+1)=k+2,则2011Φ2011的输出结果为(  )
A.2009B.2010C.2011D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的图象分别向左和向右移动$\frac{π}{3}$之后的图象的对称中心重合,则正实数ω的最小值是3.

查看答案和解析>>

同步练习册答案