分析 (Ⅰ)由条件根据f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为$\frac{π}{2}$,求得ω的值,可得函数的解析式,从而求出它的定义域.
(Ⅱ)由条件求得tanα=$\frac{1}{2}$,再利用二倍角的正切公式求得tan2α的值.
解答 解:(Ⅰ)因为函数f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为$\frac{π}{2}$,所以,$\frac{π}{ω}$=$\frac{π}{2}$,解得ω=2.
令 2x+$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈Z,x≠$\frac{1}{2}$kπ+$\frac{π}{8}$,
所以f(x)的定义域为{x|x≠$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z}.
(Ⅱ)因为f($\frac{α}{2}$)=3,即 tan(α+$\frac{π}{4}$)=3=$\frac{tanα+1}{1-tanα}$,∴tanα=$\frac{1}{2}$,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{4}{3}$.
点评 本题主要考查正切函数的图象和性质,二倍角的正切公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若p∨q为假命题,则p∧q为假命题 | |
| B. | 若a,b∈[0,1],则不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{16}$ | |
| C. | 命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,x2+x+1≥0” | |
| D. | 已知函数f(x)可导,则“f′(x0)=0”是“x0是函数f(x)极值点”的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{70}{29}$ | B. | $\frac{29}{12}$ | C. | $\frac{29}{70}$ | D. | $\frac{169}{70}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x3 | B. | y=$\sqrt{x}$ | C. | y=$\frac{1}{x}$ | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com