精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\sqrt{4-{x^2}}$,则f(x)的定义域为[-2,2],当x=0时,f(x)有最大值2.

分析 根据二次根式,得到被开方数大于等于0,求出函数的定义域,再根据函数的性质求出函数的最大值.

解答 解:∵函数$f(x)=\sqrt{4-{x^2}}$,
∴4-x2≥0,
解得-2≤x≤2,
∴f(x)的定义域为[-2,2],
∵y=4-x2,开口向下,当x=0时,y有最大值,
∴当x=0时,f(x)有最大值,最大值为2,
故答案为:[-2,2],0,2.

点评 本题考查了函数的定义域和值域的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=sin ax+$\sqrt{3}$cos ax(a>0)的最小正周期为2,则函数f(x)的一个零点为(  )
A.-$\frac{π}{3}$B.$\frac{2}{3}$C.($\frac{2}{3}$,0)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数y=cos(2x+1)的图象,可以将函数y=cos(2x-1)的图象(  )
A.向左平移1个单位B.向右平移1个单位C.向左平移2个单位D.向右平移2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点O(0,0),A(1,2),B(4,5)及$\overrightarrow{OP}$=$\overrightarrow{OA}$+t•$\overrightarrow{AB}$,试问:
(1)当t为何值时,P在x轴上.
(2)若$\overrightarrow{OB}$⊥$\overrightarrow{OP}$,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xeax(x∈R)
(Ⅰ)若a=1,求函数y=f(x)在x=0处的切线方程;
(Ⅱ)若a=-1,求函数y=f(x)的单调区间和极值;
(Ⅲ)若a=-1,且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,求证:当x>1时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A,B,C对边分别是a,b,c,若B为钝角,且$\frac{1}{sinA}+\frac{1}{cosA}=2\sqrt{2}$.
(Ⅰ) 求角A;
(Ⅱ) 若$\overrightarrow{AB}•\overrightarrow{AC}=3$,且$a=\sqrt{5}$,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x}$,g(x)=ax-lnx.
(1)求f(x)的单调区间;
(2)当a=1时,求证:对于区间(0,e](其中e为自然对数的底数)上的任意两个值x1,x2,总有g(x1)>f(x2)+$\frac{1}{2}$;
(3)若g(x)在(0,e]上的最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义域为[-6,6]的函数f(x),恒有f(x)+f(y)=f(x+y),且f(1)+f(-2)=$\frac{1}{2}$
(1)证明:f(x)+f(-x)=0,并求f(1),f(4)的值;
(2)如果x>0时,f(x)<0,解不等式f(x-1)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+mx(m>0),其中e=2.71828…为自然对数的底数.
(1)若函数f(x)的图象经过点($\frac{1}{e}$,0),求m的值;
(2)试判断函数f(x)的单调性,并予以说明;
(3)试确定函数f(x)的零点个数.

查看答案和解析>>

同步练习册答案