精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn,数列{bn}满足b1=
1
2
,b2=
1
4
,对任意n∈N*.都有
b
2
n+1
=bn•bn+2
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn,求证:
1
2
≤Tn<2.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用nan+1=2Sn,再写一式,两式相减,再叠乘,即可求数列{an}的通项公式;在数列{bn}中,由
b
2
n+1
=bn•bn+2,b1=
1
2
,b2=
1
4
,知数列{bn}是等比数列,首项、公比均为
1
2
,由此可得数列{bn}的通项公式;
(2)利用错位相减法求数列的和,由此能证明
1
2
≤Tn<2.
解答: 解:(1)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),
两式相减得,nan+1-(n-1)an=2an
∴nan+1=(n+1)an=,即
an+1
an
=
n+1
n

∴an=a1×
a2
a1
×
a3
a2
×…×
an
an-1
=n(n≥2),
a1=1满足上式,
∴数列{an}的通项公式an=n(n∈N*).
在数列{bn}中,∵bn+1 2=bn•bn+2,b1=
1
2
,b2=
1
4

∴数列{bn}是等比数列,首项、公比均为
1
2

∴数列{bn}的通项公式bn=(
1
2
n=
1
2n

(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=
1
2
+2×
1
22
+…+n×
1
2n
,①
1
2
Tn=
1
22
+2×
1
23
+…+(n-1)×
1
2n
+n×
1
2n+1
,②
由①-②,得
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
1
2n+1

=
1
2
(1-
1
2n
)
1-
1
2
-
1
2n+1

=1-
n+2
2n+1

∴Tn=2-
n+2
2n

T1 =2-
1+2
2
=
1
2

1
2
≤Tn<2.
点评:本题考查数列递推式,考查数列的通项,考查错位相减法求数列的和,考查恒成立问题,确定数列的通项,正确求和是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P,Q是双曲线x2-y2=4
2
上关于原点O对称的两点,将坐标平面沿双曲线的一条渐近线l折成直二面角,则折叠后线段PQ长的最小值为(  )
A、2
2
B、3
2
C、4
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等比数列,a1=-1,a4=64,则S4=(  )
A、-51B、64C、85D、51

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,其中AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为
40
3

(1)求几何体ABCD-A1C1D1的表面积;
(2)在线段BC1上是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c分别是角A,B,C的对边,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n
=0.
(1)求角B的大小;
(2)若a=2,S△ABC=4
3
,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在它们与坐标轴交点处的切线互相平行.
(Ⅰ)求常数a的值;
(Ⅱ)若存在x∈[0,+∞),使不等式
x-m
f(x)
>x成立,求实数m的取值范围;
(Ⅲ)令u(x)=|f(x)-g(x)|,求证:u(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足y=-2x+8,且2≤x≤3,求
y
x
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

现在要对某个学校今年将要毕业的900名高三毕业生进行乙型肝炎病毒检验,可以利用两种方法.①对每个人的血样分别化验,这时共需要化验900次;②把每个人的血样分成两份,取其中m个人的血样各一份混合在一起作为一组进行化验,如果结果为阴性,那么对这m个人只需这一次检验就够了;如果结果为阳性,那么再对这m个人的另一份血样逐个化验,这时对这m个人一共需要m+1次检验.据统计报道,对所有人来说,化验结果为阳性的概率为0.1.
(1)求当m=3时,一个小组经过一次检验就能确定化验结果的概率是多少?
(2)试比较在第二种方法中,m=4和m=6哪种分组方法所需要的化验次数更少一些?

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,公比为q,前m项和为Sm(Sm≠0),证明:Sm,S2m-Sm,S3m-S2m,…,Skm-S(k-1)m构成公比为 q的m次幂的等比数列.

查看答案和解析>>

同步练习册答案