精英家教网 > 高中数学 > 题目详情
6.不等式-25x2+10x-1≥0的解集为(  )
A.B.$\left\{{x\left|{x=\frac{1}{5}}\right.}\right\}$C.$\left\{{x\left|{x≠\frac{1}{5}}\right.}\right\}$D.$\left\{{x\left|{x≤\frac{1}{5}}\right.}\right\}$

分析 把不等式-25x2+10x-1≥0化为(5x-1)2≤0,求出它的解集即可.

解答 解:不等式-25x2+10x-1≥0可化为25x2-10x+1≤0,
即(5x-1)2≤0,
且该不等式对应方程的解为x=$\frac{1}{5}$,
所以该不等式的解集为{x|x=$\frac{1}{5}$}.
故选:B.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若双曲线9y2-mx2=1的一个顶点到它的一条渐近线的距离为$\frac{1}{5}$,则m等于(  )
A.25B.16C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{2,-3}=2,max{-4,-2}=-2,则max{x2+x-2,2x}的最小值是(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.-2C.$\frac{{\sqrt{5}+1}}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若两圆x2+y2=4与x2+y2-2ax+a2-1=0相内切,则a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.
(I)求f(-1),f(f(1))的值;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)画出函数f(x)的大致图象,并求出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关于四个数:${e^{-\sqrt{2}}},{log_{0.2}}3,lnπ,{({a^2}+3)^0}(a∈R)$的大小的结论,正确的是(  )
A.${log_{0.2}}3<{e^{-\sqrt{2}}}<{({a^2}+3)^0}<lnπ$B.${e^{-\sqrt{2}}}<{log_{0.2}}3<{({a^2}+3)^0}<lnπ$
C.${e^{-\sqrt{2}}}<{({a^2}+3)^0}<{log_{0.2}}3<lnπ$D.${log_{0.2}}3<{({a^2}+3)^0}<{e^{-\sqrt{2}}}<lnπ$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求x2+x-2的值;
(2)设4a=5b=m,且$\frac{1}{a}+\frac{2}{b}=1$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,离心率为$\frac{\sqrt{2}}{2}$,O为原点,A(a,0),B(0,b),点O到直线AB的距离为$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过M(0,2)作倾斜角为锐角的直线l交椭圆C于不同的两点P,Q,
(1)若$\overrightarrow{MP}$=$\frac{2}{3}$$\overrightarrow{MQ}$,求直线l的方程;
(2)若以PQ为直径的圆过左焦点,求直线l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合U={0,1,2,3,4,5,6,7,8,9},A={1,2,3,4,6},B={4,5,6,7,9}.
(1)求A∪B,∁UB;
(2)若集合C={x|-m≤x≤12-m},且A∩B⊆C,求m的取值范围.

查看答案和解析>>

同步练习册答案