精英家教网 > 高中数学 > 题目详情
19.函数f(x)=-x3-x+3的零点个数为(  )
A.0B.1C.2D.不确定

分析 利用导数法,可得函数在R上为减函数,再由零点存在定理,可得函数f(x)在区间(1,2)上存在唯一零点.

解答 解:∵f(x)=-x3-x+3,
∴f′(x)=-3x2-1,
∵f′(x)<0恒成立,故函数在R上为减函数,
又由f(1)=1>0,f(2)=-7<0,
故函数f(x)在区间(1,2)上存在唯一零点,
故选:B.

点评 本题考查的知识点是函数零点的判定定理,导数法判断函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.书包内,有中职课本语文、数学、英语、政治各1本,从中任取1本,则取出的数学课本的概率为$\frac{1}{4}$;取出的是初中语文课本的概率是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=$\frac{a}{x}$,g(x)为幂函数,若F(x)=f(x)+g(x)的图象过点A(1,2)和B(2,$\frac{5}{2}$),则F(x)=$\frac{1}{x}$+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2=4F,则(  )
A.与两坐标轴相切B.与两坐标轴均不相交
C.与坐标轴上截得不相等的线段D.在坐标轴上截得相等的线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域:
(1)f(x)=$\frac{5-x}{\sqrt{x-2}}$;
(2)f(x)=$\frac{\sqrt{x-2}}{5-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=1,an +an+1=($\frac{1}{4}$)n(n∈N*),记Tn=a1+a2 •4+a3 •42+…+an•4n-1,则5Tn-4nan=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y34657
(1)画出散点图
(2)求回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,M、N是它与x轴的两个交点,D、C分别为它的最高点和最低点,点F(0,1)是线段MD的中点,$\overrightarrow{MD}$•$\overrightarrow{MN}$=$\frac{{π}^{2}}{18}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,不正确的是(  )
A.①可能是分层抽样,也可能是系统抽样
B.②可能是分层抽样,不可能是系统抽样
C.③可能是分层抽样,也可能是系统抽样
D.④可能是分层抽样,也可能是系统抽样

查看答案和解析>>

同步练习册答案