精英家教网 > 高中数学 > 题目详情
2.为了解参加某种知识竞赛的10 000名学生的成绩,从中抽取一个容量为500的样本,那么采用什么抽样方法比较恰当?写出抽样过程.

分析 因需要研究的个体很多,且差异不明显,适宜用系统抽样;
抽样过程是:(1)编号,(2)确定组数与组距,
(3)在第一组中用简单随机抽样抽取1个号码,
(4)以此为起始号码,间隔相等抽取所有的号码,组成样本.

解答 解:适宜选用系统抽样,抽样过程如下:
(1)随机地将这10 000名学生编号为1,2,3,…,10 000;
(2)将总体按编号顺序均分成500个部分,每部分包括20个个体;
(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18;
(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为500的样本:
18,38,58,…,9 978,9 998.

点评 本题考查了系统抽样方法的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{an}的前n项和Sn是递增数列;p3:数列{$\frac{{a}_{n}}{n}$}是递增数列;p4:数列{an+nd}是递增数列.其中的真命题为(  )
A.p1,p2B.p3,p4C.p2,p3D.p1,p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方形ABCD的边长是a,依次连接正方形ABCD的各边中点得到一个新的正方形,再依次连接新正方形的各边中点又得到一个新的正方形,按此规律,依次得到一系列的正方形,如图所示,现有一只小虫从A点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个新正方形的边逆时针方向爬行,如此下去,爬行了10条线段,则这10条线段的长度的和是(  )
A.$\frac{31}{128}(2+\sqrt{2})a$B.$\frac{31}{64}(2+\sqrt{2})a$C.$(1+\frac{{\sqrt{2}}}{32})a$D.$(1-\frac{{\sqrt{2}}}{32})a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={2},B={x|ax-1=0,a∈R},若A∩B=B,则a=0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$kC_n^k=nC_{n-1}^{k-1}$;
(Ⅱ)在数学上,常用符号来表示算式,如记$\sum_{i=0}^n{a_i}={a_0}+{a_1}+{a_2}+…+{a_n}$,其中i∈N,n∈N*
①若a0,a1,a2,…,an成等差数列,且a0=0,求证:$\sum_{i=0}^n{({a_i}•C_n^i})={a_n}•{2^{n-1}}$;
②若$\sum_{k=1}^{2n}{{{(1+x)}^k}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2n}}{x^{2n}}$,${b_n}=\sum_{i=0}^n{{a_{2i}}}$,记${d_n}=1+\sum_{i=1}^n{[{{(-1)}^i}}•{b_i}•C_n^i]$,且不等式t•(dn-1)≤bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点,证明A1,C1,F,E四点共面,并求点B到平面A1EF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,梯形ABCD中,|$\overrightarrow{AD}$|=|$\overrightarrow{BC}$|,$\overrightarrow{EF}$∥$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则相等向量是(  )
A.$\overrightarrow{AD}$与$\overrightarrow{BC}$B.$\overrightarrow{OA}$与$\overrightarrow{OB}$C.$\overrightarrow{AC}$与$\overrightarrow{BD}$D.$\overrightarrow{EO}$与$\overrightarrow{OF}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx}{x}$-1.
(I)求函数f(x)的单调区间;
(II)设m>0,若函数g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有两个零点,求实数m的取值范围.
(III)证明:对?n∈N*,不等式$ln{(\frac{1+n}{n})^e}<\frac{1+n}{n}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中点,E,G分别为PC,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,F为线段PD上一动点.当二面角G-EF-D的大小为$\frac{π}{4}$时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

同步练习册答案