分析 (Ⅰ)由条件利用二倍角公式求得sinA=$\frac{1}{2}$,可得A的值.
(Ⅱ)由条件利用,△ABC的面积为2求得bc=8,再利用余弦定理求得b+c的值.
解答 解:(Ⅰ)在锐角△ABC中,由2cos2$\frac{B+C}{2}$+sin2A=1,可得 cos(B+C)+sin2A=0,
即sin2A=cosA,即 2sinAcosA=cosA,求得sinA=$\frac{1}{2}$,∴A=$\frac{π}{6}$.
(Ⅱ)设a=2$\sqrt{3}-2$,△ABC的面积为2,∴$\frac{1}{2}$bc•sinA=2,
∴bc=8.
再利用余弦定理可得a2=16-8$\sqrt{3}$=b2+c2-2bc•cosA=(b+c)2-2bc-$\sqrt{3}$bc
=(b+c)2-16-8$\sqrt{3}$,
∴b+c=4$\sqrt{2}$.
点评 本题主要考查二倍角公式,正弦定理、余弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 6 | C. | 4$\sqrt{2}$ | D. | 2$\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $π或\frac{π}{2}$ | D. | 0或$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,6) | B. | (2,36) | C. | (4,20) | D. | (4,36) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在△ABC的内部(不含边界) | B. | 在△ABC的边界上(不含顶点) | ||
| C. | 为△ABC的某个定点 | D. | 以上都有可能,视△ABC的形状而定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com