精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=
n2+n
2
,等比数列{bn}满足b1b2=2b3,且b1,b2+2,b3成等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,Tn为数列{cn}的前n项和,求Tn的取值范围.
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)直接利用an=Sn-Sn-1,n≥2,验证n=1,求数列{an}的通项公式;利用b1b2=2b3,且b1,b2+2,b3成等差数列,求出首项与公比即可求出{bn}的通项公式.
(Ⅱ)设cn=
an
bn
,利用错位相减法直接求解数列{cn}的前n项和,通过表达式直接求Tn的取值范围.
解答: (本小题满分14分)
解:(Ⅰ)当n≥2时,an=Sn-Sn-1=
n(n+1)
2
-
(n-1)n
2
=n

n=1时,a1=1,满足题意,
∴an=n…(3分)
设{bn}的公比为q,则
b12•q=2b1q2
2(b1q+2)=b1+b1q2
…(5分)
∴2(2q2+2)=2q(1+q2)∴q=2,b1=4
bn=2n+1…(7分)
(Ⅱ)∵an=n,bn=2n+1
cn=
n
2n+1

Tn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1
,…①,
1
2
T
n
=
1
23
+
2
24
+…+
n-1
2n+1
+
n
2n+2
,…②
由①-②错位相减法得
1
2
T
n
=
1
22
+(
1
23
+
1
24
+…+
1
2n+1
)-
n
2n+2

解得Tn=1-
n+2
2n+1
…(11分)
Tn+1-Tn=1-
n+3
2n+2
-(1-
n+2
2n+1
)=
2n+1
2n+2
>0

1
4
Tn<1
…(14分)
点评:本题考查数列的通项公式的求法,错位相减法求解数列的和,以及范围问题,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”是真命题
B、“x=-1”是“x2-5x-6=0”的必要不充分条件
C、命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,有x2+x+1>0”
D、命题“若x=
π
6
,则sinx=
1
2
”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则
2+i
3+i
=(  )
A、
1
2
-
i
10
B、
7
10
-
i
10
C、
1
2
+
i
10
D、
7
10
+
i
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax,g(x)=-x2-a(a∈R).
(Ⅰ)若函数F(x)=f(x)-g(x)在x∈[1,+∞)上单调递增,求a的最小值;
(Ⅱ)若函数G(x)=f(x)+g(x)的图象与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,l1,l2是两条互相垂直的海岸线,C为一海岛,ABCD是一矩形渔场,为了扩大渔业规模,将该渔场改建成一个更大的矩形渔场AMPN,要求点D,N在海岸线l1上,点B,M在海岸线l2上,且两点M,N连线经过海岛C,已知AB=3km,AD=2km.
(1)要使矩形AMPN的面积大于32km2,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.
(3)若AN的长度不少于6km,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an•3n-1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是集合P={1,2,3,…,n}的一个k元子集(即由k个元素组成的集合),且A的任何两个子集的元素之和不相等;而对于集合P的包含集合A的任意k+1元子集B,则存在B的两个子集,使这两个子集的元素之和相等.
(1)当n=6时,试写出一个三元子集A.
(2)当n=16时,求证:k≤5,并求集合A的元素之和S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},其前n项和Sn,满足6Sn=
a
2
n
+3an+2,又a1,a2,a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1bn+a2bn-1+…+anb1,n∈N+,证明3Tn+1=2bn+1-an+1(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

形如y=x 
1
xα
(x>0)的函数称为“幂指型函数”,它的求导过程可概括成:取对数--两边对x求导--代入还原;例如:y=xx(x>0),取对数lny=xlnx,对x求导
1
y
y′=lnx+1,代入还原y′=xx(lnx+1);给出下列命题:
①当α=1时,函数y=x 
1
xα
(x>0)的导函数是y′=
1-lnx
x2
x 
1
x
(x>0);
②当α>0时,函数y=x 
1
xα
(x>0)在(0,e 
1
α
)上单增,在(e 
1
α
,+∞)上单减;
③当b
1
α
e
1
e
时,方程bx=xα(b>0,b≠1,α≠0,x>0)有根;
④当α<0时,若方程xα=logbx(b>0,b≠1,x>0)有两根,则e 
1
αe
<b<1;
其中正确的命题是
 

查看答案和解析>>

同步练习册答案