分析 (1)证明AC,CB,CC1两两垂直,以C为原点建立坐标系,求出$\overrightarrow{A{B}_{1}}$,$\overrightarrow{B{C}_{1}}$的坐标,计算其数量积为0得出AB1⊥C1B;
(2)求出平面ABB1A1的法向量$\overrightarrow{n}$,则|cos<$\overrightarrow{n},\overrightarrow{{C}_{1}B}$>|即为所求.
解答
(1)证明:连接B1C交BC1于点O.
∵CC1⊥底面ABC,AC?平面ABC,BC?平面ABC,
∴CC1⊥AC,CC1⊥BC,
又AC⊥BC,
∴AC,CB,CC1两两垂直,
以CA所在直线为x轴,CB所在直线为y轴,
CC1所在直线为z轴建立如图所示的空间直角坐标系.
∵AC=3,BC=CC1=4,
∴A(3,0,0),B(0,4,0),B1(0,4,4),C1(0,0,4).
∴$\overrightarrow{A{B}_{1}}$=(-3,4,4),$\overrightarrow{B{C}_{1}}$=(0,-4,4),
∴$\overrightarrow{A{B}_{1}}•\overrightarrow{B{C}_{1}}$=-3•0+4•(-4)+4•4=0,
∴AB1⊥BC1.
(2)解:∵A1(3,0,4),A(3,0,0),B(0,4,0),B1(0,4,4),C1(0,0,4).
∴$\overrightarrow{AB}$=(-3,4,0),$\overrightarrow{A{A}_{1}}$=(0,0,4),$\overrightarrow{{C}_{1}B}$=(0,4,-4).
设平面ABB1A1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{n}=0}\\{\overrightarrow{A{A}_{1}}•\overrightarrow{n}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-3x+4y=0}\\{4z=0}\end{array}\right.$.
令x=4得$\overrightarrow{n}$=(4,3,0).
∴cos<$\overrightarrow{n},\overrightarrow{{C}_{1}B}$>=$\frac{\overrightarrow{n}•\overrightarrow{{C}_{1}B}}{|\overrightarrow{n}||\overrightarrow{{C}_{1}B}|}$=$\frac{12}{5•4\sqrt{2}}$=$\frac{3\sqrt{2}}{10}$.
∴直线C1B与平面ABB1A1所成角的正弦值为$\frac{3\sqrt{2}}{10}$.
点评 本题考查了空间角的计算,空间向量在立体几何中的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | A=B | B. | A?B | C. | B?A | D. | A?B |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{29}{35}$ | B. | $\frac{15}{17}$ | C. | 8 | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com