精英家教网 > 高中数学 > 题目详情
14.函数y=2x+$\frac{2}{x}$(x<0)的最大值为-4.

分析 由题意可得-x>0,由基本不等式可得-2x+$\frac{2}{-x}$≥4,再由不等式的性质可得.

解答 解:∵x<0,∴-x>0,
∴y=2x+$\frac{2}{x}$=-(-2x+$\frac{2}{-x}$),
∵-2x+$\frac{2}{-x}$≥2$\sqrt{(-2x)•\frac{2}{-x}}$=4
∴y=-(-2x+$\frac{2}{-x}$)≤-4,
当且仅当-2x=$\frac{2}{-x}$即x=-1时取等号,
故答案为:-4

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知方程4x|x|+y|y|=4的曲线为函数y=f(x)的图象,对于函数f(x)有如下结论,其中正确的是②⑤.(写出所有正确结论的序号)
①函数y=f(x)是R上的奇函数
②函数y=f(x)是R上的减函数
③函数f(x)的图象关于直线y=2x对称
④函数y=g(x)和y=f(x)的图象关于原点对称,则函数g(x)的图象是方程4x|x|-y|y|=4表示的曲线
⑤方程f(x)+2x=k恰有两个不等的解,则k∈(0,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若b=5,sinBsinC=$\frac{5}{7}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f(x+6)=f(x).当x∈[-3,-1)时,f(x)=-(x+2)2,当x∈[-1,3)时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.336B.355C.1676D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆C上的点到两个焦点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点与l平行的直线与椭圆交于点P.证明:|AM|•|AN|=2|OP|2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,$\overline{z}$是z=1+i的共轭复数,则$\frac{\overline{z}}{{z}^{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题为真命题的序号是(  )
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若l∥α,α∥β,则l∥β;
④若l⊥α,l∥m,α∥β,则m⊥β.
A.①④B.①③C.②④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知样本M的数据如下:80,82,82,84,84,84,86,86,86,86,若将样本M的数据分别加上4后得到样本N的数据,那么两样本M,N的数字特征对应相同的是(  )
A.平均数B.众数C.标准差D.中位数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高三年级研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人.
(Ⅰ)求P(A)及P(B|A);
(Ⅱ)设在参观的第三个小时时间内,该小组在甲展厅的人数为ξ,则在事件A发生的前提下,求ξ的概率分布列及数学期望.

查看答案和解析>>

同步练习册答案