| A. | (0,+∞) | B. | (-∞,0) | C. | (-∞,1) | D. | (1,+∞) |
分析 由题意f(0)=0,求出a=1,确定f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-1+$\frac{2}{1+{2}^{x}}$,单调递减,利用f(2k-1)<$\frac{1}{3}$,f(-1)=$\frac{1}{3}$,即可求出k的取值范围.
解答 解:由题意f(0)=0,∴a=1,∴f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-1+$\frac{2}{1+{2}^{x}}$,单调递减,
∵f(2k-1)<$\frac{1}{3}$,f(-1)=$\frac{1}{3}$,
∴2k-1>-1,∴k>0.
故选A.
点评 本题考查函数的奇偶性、单调性,考查不等式的解法,确定函数的单调性是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,9) | B. | (8,9] | C. | (12,32) | D. | [12,32) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (-∞,-1)∪(0,1) | C. | (-1,1) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com