精英家教网 > 高中数学 > 题目详情
已知A={x||x-a|=0},B={1,2,b},是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出对应的a;若不存在,试说明理由.
考点:集合的包含关系判断及应用
专题:集合
分析:集合A、B均为有限集合,可以直接根据元素间的相等关系来判断或求出对应的实数a.
解答: 解:对任意的实数b都有A⊆B,则当且仅当1或2也是A中的元素,
∵A={a},
∴a=1,或a=2
点评:本题主要考查集合的化简和集合的运算,要注意分情况讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2-(a+1)x(a∈R).
(Ⅰ)若函数y=f(x)有两个不同的极值点,求实数a的取值范围;
(Ⅱ)设曲线C:y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过曲线C(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点A(6,-4)、斜率k=-2
(1)求直线l的一般式方程
(2)求直线l在 y轴上的截距并写出直线l的斜截式方程
(3)求直线l在 x轴上的截距并写出直线l的截距式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:5x+1=3x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

将进货价为8元的商品按每件10元售出,每天可销售200件;若每件的售价涨0.5元,其销售量减少10件,问将售价定为多少时,才能使所赚利润最大?并求出这个最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,E是矩形ABCD的CD边的中点,且AD=2,AB=4,连AE,将△ADE沿AE翻折(如图2),使平面ADE⊥平面ABCE,F是BD中点,连CF.

(Ⅰ)求证:CF∥平面ADE;
(Ⅱ)求证:AD⊥平面DBE;
(Ⅲ)求四棱锥D-ABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0且b>0)的两个焦点,P为双曲线C上一点,且∠F1PF2=60°.若△PF1F2的面积为9
3
,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间不共线的四个点可确定
 
个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+1(x≤0)
log
1
3
x(x>0)
,则不等式f(x)>1的解集为
 

查看答案和解析>>

同步练习册答案