精英家教网 > 高中数学 > 题目详情
数列{an},各项都为正数,其前n项和Sn,Sn2-(n2+n-1)Sn-(n2+n)=0,S1=2,则an=
 
考点:数列递推式
专题:计算题,等差数列与等比数列
分析:由Sn2-(n2+n-1)Sn-(n2+n)=0,及an>0可求得Sn,再由an与Sn的关系可求an
解答: 解:(1)∵Sn2-(n2+n-1)Sn-(n2+n)=0,及an>0,得Sn=n2+n,
∴n=1时,a1=S1=2,n≥2时,an=Sn-Sn-1=2n.
∴an=2n(n≥1),
故答案为:2n.
点评:该题考查数列的通项公式,考查学生的运算求解能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

写出求解二元一次方程组
3x-2y=8
4x+y=7
的一个算法.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的可导函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时,取得极小值,若(1-t)a+b+t-3>0恒成立,则实数t的取值范围为(  )
A、(2,+∞)
B、[2,+∞)
C、(-∞,
5
4
D、(-∞,
5
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过点A(2,π)且与极轴垂直,求l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如表:
 编号 1 23 45 67
 身高x 163 164 165 166 167 168 169
 体重y 5252 5355 5456 56
(1)求根据女大学生的身高x预报体重y的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重;
(3)试分析说明回归方程预报的效果.
附:1.回归直线的斜率和截距的最小二乘法估计公式分别为:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x

2.反映回归效果的公式为:R2=1-
n
i-1
(y1
y1
)2
n
i=1
(yi-
.
y
)
,其中R2越接近于1,表示回归的效果越好.
3.参考数据:
7
i=1
(y1-
yi
2=2.25.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=22x+2xa+a+1.
(1)求函数f(x)的值域;
(2)若f(x)>-3对任意的x∈[0,2]恒成立,求a的取值范围;
(3)讨论f(x)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

用图形表示下列定积分:
(1)
2
1
lnxdx;
(2)
0
-1
exdx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,在(0,+∞)上单调递减,且f(2)=0,若f(x-1)≤0,则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D是BC上的一点.已知∠B=60°,AD=2,AC=
10
,DC=
2
,则AB=
 

查看答案和解析>>

同步练习册答案