精英家教网 > 高中数学 > 题目详情
8.满足$sinx>\frac{{\sqrt{3}}}{2}$的x的集合为{x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}$+2kπk∈z}.

分析 根据正弦函数的图象,找到$\frac{\sqrt{3}}{2}$所对应的正弦函数值,进而根据正弦函数的单调性求得x的范围,即不等式的解集.

解答 解:∵sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,
∴由正弦函数的图象和性质可得:在一个周期内[0,2π]上,sinx>$\frac{\sqrt{3}}{2}$,可解得:$\frac{π}{3}$<x<$\frac{2π}{3}$,
∴可得:2kπ+$\frac{π}{3}$<x<2kπ+$\frac{2π}{3}$,k∈Z,
故不等式的解集为{x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}$+2kπk∈z}
故答案为:{x|$\frac{π}{3}$+2kπ<x<$\frac{2π}{3}$+2kπk∈z}

点评 本题主要考查了正弦函数的图象.考查了学生对正弦函数单调性及数形结合的数学思想的运用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设a为实数,函数f(x)=2x2+(x-a)|x-a|
(Ⅰ)若a=1,求f(x)单调递增区间;
(Ⅱ)记g(x)=x2-2x-3,若存在x1,x1∈[0,4],使得f(x1)=g(x1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若二次函数f(x)=ax2+bx+c(a≠0)的图象与直线y=x无交点,现有下列结论:
①若a=1,b=2,则c>$\frac{1}{4}$
②若a+b+c=0,则不等式f(x)>x对一切实数x都成立
③函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点
④若a>0,则不等式f[f(x)]>x对一切实数x都成立
⑤方程f[f(x)]=x一定没有实数根
其中正确的结论是①③④⑤(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x(m∈R),令F(x)=f(x)+g(x).
(1)当m=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l1:ax+2y+3=0与l2:x-(a-1)y+a2-1=0,则“a=2”是“直线l1与l2垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l:3x+4y-3=0和圆C:x2+y2-6x-2y+1=0,则圆C上到直线l的距离等于1的点的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“a>b>0”是“a2>b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知 A={x|x=4n+1,n∈Z},B={x|x=8n+1,n∈Z},判断A、B之间的关系是A?B(用⊆或?或∈或∉填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于实数x的两个命题:p:$\frac{x+1}{2-x}$<0,q:x+a<0,且命题p是q的必要不充分条件,则实数a的取值范围是a≥1.

查看答案和解析>>

同步练习册答案