精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为2,线段D1B1上有两个动点E、F,且EF=1,则下列结论中错误的是(

A.AC⊥BE
B.AA1∥平面BEF
C.三棱锥A﹣BEF的体积为定值
D.△AEF的面积和△BEF的面积相等

【答案】D
【解析】解:如图所示,
对于A,AC⊥平面BB1D1D,又BE平面BB1D1D,
∴AC⊥BE,故A正确;
对于B,∵AA1∥平面BDD1B1 , 又E、F在直线D1B1上运动,
∴平面BEF与平面BDD1B1重合,
∴AA1∥平面BEF,故B正确;
对于C,由于点B到直线B1D1的距离不变,故△BEF的面积为定值;
又点A到平面BEF的距离为 = ,故V三棱锥ABEF为定值,C正确;
对于D,∵点A、B到直线B1D1的距离不相等,
∴△AEF的面积与△BEF的面积不相等,故D错误.
故选:D.
选项A中,由AC⊥平面BB1D1D得出AC⊥BE,正确;
选项B中,由AA1∥平面BDD1B1 , 平面BEF与平面BDD1B1重合,得出AA1∥平面BEF,正确;
选项C中,由△BEF的面积为定值,点A到平面BEF的距离定值,得V三棱锥ABEF为定值,正确;
选项D中,由点A、B到直线B1D1的距离不相等,得△AEF的面积与△BEF的面积不相等,D错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sin2x+1﹣
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、BC的中点,EF与BD交于点G,M为棱BB1上一点.
(1)证明:EF∥平面 A1C1D;
(2)当B1M:MB的值为多少时,D1M⊥平面 EFB1 , 证明之;
(3)求点D到平面 EFB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;(2)求函数上的最大值;

(3)求证:存在唯一的,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆(x+2)2+y2=5关于直线x﹣y+1=0对称的圆的方程为(
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委在全校采用随机抽样的方法抽取了80名学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月“关注度”分为6组: ,得到如图所示的频率分布直方图.

(1)求的值;

(2)求抽取的80名学生中月“关注度”不少于15天的人数;

(3)在抽取的80名学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x+1)是定义在R上的周期为2的偶函数,当x∈[1,2)时,f(x)=log2x,设a=f( ), ,c=f(1),则a,b,c的大小关系为(
A.a<c<b
B.c<a<b
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足Sn=a(Sn﹣an+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.
(1)求{an}的通项公式;
(2)设bn=anlog2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y), ,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.

查看答案和解析>>

同步练习册答案