| A. | 1 | B. | 5 | C. | 10 | D. | 20 |
分析 令x=1,则2n=32,解得n=5,再利用通项公式即可得出.
解答 解:令x=1,则2n=32,解得n=5,
∴$(\sqrt{x}+\frac{1}{x})^{5}$的通项公式:Tr+1=${∁}_{5}^{r}(\sqrt{x})^{5-r}(\frac{1}{x})^{r}$=${∁}_{5}^{r}$${x}^{\frac{5}{2}-\frac{3r}{2}}$,
令$\frac{5}{2}-\frac{3r}{2}$=1,解得r=1.
∴该展开式中含x的系数为${∁}_{5}^{1}$=5.
故选:B.
点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源:2015-2016学年河北省保定市高一上学期期中考试数学试卷(解析版) 题型:选择题
若函数
是R上的单调递增函数,则实数a的取值范围为( )
A.(1,+∞) B.(1,8) C.(4,8) D.[4,8)
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$-1 | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com