精英家教网 > 高中数学 > 题目详情
16.设抛物线y2=2x的焦点为F,过F的直线交该抛物线于A,B两点,则|AF|+4|BF|的最小值为$\frac{9}{2}$.

分析 设A(x1,y1),B(x2,y2).当直线AB的斜率存在时,设直线AB的方程为y=$k(x-\frac{1}{2})$,(k≠0).与抛物线方程联立可得根与系数的关系,利用|AF|+4|BF|=${x}_{1}+\frac{1}{2}+4({x}_{2}+\frac{1}{2})$及其基本不等式的性质即可得出,当直线AB的斜率不存在时,直接求出即可.

解答 解:F$(\frac{1}{2},0)$,
设A(x1,y1),B(x2,y2).
当直线AB的斜率存在时,设直线AB的方程为y=$k(x-\frac{1}{2})$,(k≠0).
联立$\left\{\begin{array}{l}{y=k(x-\frac{1}{2})}\\{{y}^{2}=2x}\end{array}\right.$,化为${k}^{2}{x}^{2}-({k}^{2}+2)x+\frac{1}{4}{k}^{2}$,
x1x2=$\frac{1}{4}$.
∴|AF|+4|BF|=${x}_{1}+\frac{1}{2}+4({x}_{2}+\frac{1}{2})$=x1+4x2+$\frac{5}{2}$$≥2\sqrt{4{x}_{1}{x}_{2}}$+$\frac{5}{2}$=$\frac{9}{2}$,当且仅当x1=4x2=1时取等号.
当直线AB的斜率不存在时,|AF|+4|BF|=5p=5.
综上可得:|AF|+4|BF|的最小值为$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查了抛物线的定义标准方程及其性质、直线与抛物线相交问题转化为方程联立可得根与系数的关系、焦点弦长公式、基本不等式的性质,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知A1,A2,F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点和左、右焦点,过F2引一条直线与椭圆交于M,N两点,△MF1N的周长为8,且|F2A2|=1.
(1)求椭圆E的方程;
(2)过点P(-3,0)且斜率不为零的直线l与椭圆交于不同的两点A,B,C,D为椭圆上不同于A,B的另外两点,满足$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}C}$,$\overrightarrow{B{F}_{2}}$=μ$\overrightarrow{{F}_{2}D}$,且λ+μ=$\frac{13}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若θ是第三象限角,则cosθ$\sqrt{1+ta{n}^{2}θ}$+$\frac{tanθ}{\sqrt{\frac{1}{co{s}^{2}θ}-1}}$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知一个正四面体的展开图组成的图形的外接圆的半径为$\frac{4\sqrt{3}}{3}$,求该正四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{2}$(x2+a)的图象在点Pn(n,f(n))(n∈N*)处的切线ln的斜率为kn,直线ln交x轴,y轴分别于点An(xn,0),Bn(0,yn),且y1=-1.给出以下结论:
①a=-1;
②记函数g(n)=xn(n∈N*),则函数g(n)的单调性是先减后增,且最小值为1;
③当n∈N*时,yn+kn+$\frac{1}{2}$<ln(1+kn);
④当n∈N*时,记数列{$\frac{1}{\sqrt{|{y}_{n}|}•{k}_{n}}$}的前n项和为Sn,则Sn<$\frac{\sqrt{2}(2n-1)}{n}$.
其中,正确的结论有①③④(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+y+1=0经过抛物线y2=4x的焦点,则直线与抛物线相交弦弦长为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点A(1,1),B,C是抛物线y2=x上三点,若∠ABC=90°,则AC的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)是定义在(0,+∞)上的函数,k是正常数,且对?x∈(0,+∞)恒有f[f(x)]=kx成立
(1)若f(x)是在(0,+∞)上的增函数,且k=1,求证f(x)=x;
(2)对?x1,x2∈(0,+∞),当x2>x1时,有f(x2)-f(x1)>x2-x1成立,若k=2,证明:$\frac{4}{3}$<$\frac{f(x)}{x}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},n为偶数}\\{{a}_{n}+1,n为奇数}\end{array}\right.$,a1=1,若bn=a2n-1+2(bn≠0)
(1)求a4,并证明数列{bn}是等比数列;
(2)令cn=n•a2n-1,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案