精英家教网 > 高中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,
OA
=
a
OB
=
b
OC
=
c
OD
=
d
,且E、F分别为AB、CD的中点,则(  )
A、
EF
=
1
2
a
+
b
+
c
+
d
B、
EF
=
1
2
a
-
b
+
c
-
d
C、
EF
=
1
2
c
+
d
-
a
-
b
D、
EF
=
1
2
a
+
b
-
c
-
d
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:由于EF为梯形ABCD的中位线,AD∥BC,可得
EF
=
1
2
(
AD
+
BC
)
,利用三角形法则可得
AD
=
OD
-
OA
=
d
-
a
BC
=
OC
-
OB
=
c
-
b
,代入即可得出.
解答: 解:∵EF为梯形ABCD的中位线,AD∥BC,
EF
=
1
2
(
AD
+
BC
)

AD
=
OD
-
OA
=
d
-
a
BC
=
OC
-
OB
=
c
-
b

EF
=
1
2
(
c
+
d
-
a
-
b
)

故选:C.
点评:本题考查了梯形的中位线定理、向量的三角形法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=sin
7
,b=cos
7
,c=tan
7
,则a,b,c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-1,2},B={x|
1
2
<(
1
2
x<4},则A∩B=(  )
A、{-1,0}B、{-1}
C、{0}D、{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=6,|
b
|=3,
a
b
=-12,则向量
a
在向量
b
方向上的投影是(  )
A、2B、-2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件是(  )
A、a≥9B、a≤9
C、a≥10D、a≤10

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数在(1,+∞)为增函数的是(  )
A、y=x2-4x
B、y=|x-2|
C、y=
x
1-x
D、y=log0.5x

查看答案和解析>>

科目:高中数学 来源: 题型:

cos75°cos15°+sin75°sin15°的值为(  )
A、0
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-x-6>0的解集是(  )
A、{x|-2<x<3}
B、{x|x<-2或x>3}
C、{x|-3<x<2}
D、{x|x<-3或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
-
3
cos
x
2
+1
(1)求f(x)的最小正周期和递减区间;
(2)求f(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

同步练习册答案