精英家教网 > 高中数学 > 题目详情
10.已知f(x)=$\frac{ax+b}{1+{x}^{2}}$(a,b为常数)是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{4}{5}$.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数.

分析 (1)根据函数f(x)是定义在(-1,1)上的奇函数,可得f(0)=0,结合f($\frac{1}{2}$)=$\frac{4}{5}$,可求出a,b值,进而得到函数f(x)的解析式;
(2)直接利用函数单调性的定义进行证明,设在(-1,1)上任取两个数x1,x2,且x1<x2,然后判定f(x1)-f(x2)的符号,从而得到结论.

解答 解:(1)∵f(x)=$\frac{ax+b}{1+{x}^{2}}$(a,b为常数)是定义在(-1,1)上的奇函数,
且f($\frac{1}{2}$)=$\frac{4}{5}$,
∴f($\frac{1}{2}$)=$\frac{\frac{1}{2}a+b}{1+\frac{1}{4}}$=$\frac{4}{5}$,即$\frac{1}{2}$a+b=1,①,
f(-$\frac{1}{2}$)=$\frac{-\frac{1}{2}a+b}{1+\frac{1}{4}}$=-$\frac{4}{5}$,即-$\frac{1}{2}$a+b=-1,②,
由①②解得:a=2,b=0,
故f(x)=$\frac{2x}{1{+x}^{2}}$;
(2)任取任取两个数x1,x2∈(-1,1),且x1<x2
则f(x1)-f(x2)=$\frac{{2x}_{1}}{1{{+x}_{1}}^{2}}$-$\frac{{2x}_{2}}{1{{+x}_{2}}^{2}}$=$\frac{2{(x}_{1}{-x}_{2})(1{-x}_{1}{•x}_{2})}{(1{{+x}_{1}}^{2})(1{{+x}_{2}}^{2})}$<0
因为x1,x2∈(-1,1),且x1<x2
∴x1-x2<0,1+x12>0,1+x22>0,1-x1•x2>0
则f(x1)<f(x2
故函数f(x)在(-1,1)上单调递增.

点评 本题主要考查了函数奇偶性的性质,函数单调性的证明,解题的关键是化简判定符号,同时考查了运算求解的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(I)求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在区间[$\frac{π}{8},\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={0,2,3},B={x+1,x},A∩B={3},则实数x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)图象的一个对称中心为($\frac{π}{12}$,0),且图象上相邻两条对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调减区间;
(3)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(理科)如图,已知四棱锥P-ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=$\sqrt{2}$,
(1)求证:平面PAB⊥平面ABCD;
(2)求二面角P-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为矩形,F是BC的中点,且PA=BC=2AB=2.
(1)求证:CD⊥PA
(2)线段PA是否存在一点E,使得EF∥平面PCD?若有,请找出具体位置,并加以证明,若无,请分析说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是首项为1,公比为$\frac{1}{2}$的等比数列,令Sn=a1+a2+…+an,Tn=a1(a1+a2+…+an)+a2(a2+a3+…+an)+…+an-1(an-1+an)+an2.若对一切正整数n,都有Tn>c•Sn2,则c的取值范围是(-∞,$\frac{4}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若数列{an}满足a1=1,a2=2,an=an-1+an-2(n∈N*,n>2),则a6=(  )
A.13B.8C.21D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+a|+|x-1|.
(1)当a=3时,求不等式f(x)≥x+3a的解集;
(2)若f(x)≤|x-4|的解集包含[0,1],求a的取值范围.

查看答案和解析>>

同步练习册答案