| A. | -7 | B. | -3 | C. | 1 | D. | 9 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x=3}\\{x-y+2=0}\end{array}\right.$,解得A(3,5),
化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过A时,直线在y轴上的截距最大,z有最小值为-7.
故选:A.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 开口向左,准线方程为x=1 | B. | 开口向右,准线方程为x=-1 | ||
| C. | 开口向上,准线方程为y=-1 | D. | 开口向下,准线方程为y=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的图象经过点(0,1) | B. | f(x)在R上的增函数 | ||
| C. | f(x)的图象关于y轴对称 | D. | f(x)的值域是(0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com