精英家教网 > 高中数学 > 题目详情
17.已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为2$\sqrt{2}$.

分析 过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.设抛物线的焦点为F,由抛物线的定义可得|PN|=|PF|,求|PM|+|PN|转化为求|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.利用点到直线的距离公式求解即可.

解答 解:过点P分别作PM⊥l1,PN⊥l2,垂足分别为M,N.
抛物线y2=4x的焦点为F(1,0),l2:x+1=0是抛物线y2=4x的准线方程.
由抛物线的定义可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,当三点M,P,F共线时,|PM|+|PF|取得最小值.
故小值为点F到其最到直线l1的距离,∴|FM|=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了抛物线的定义及其性质、三点共线、点到直线的距离公式,考查转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在图中,用阴影表示出集合(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在10与100之间插入50个数使之成等差数列,求插入的数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.平移坐标轴,将坐标原点移至O′(2,2),则圆x′2+y′2-2x′-2y′+1=0在原坐标系中的方程为(  )
A.(x-1)2+(y-1)2=1B.x2+y2=1C.(x+1)2+(y+1)2=1D.x2-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A(3,0)、B(0,4),动点P(x0,y0)在线段AB上移动,则4x0+3y0的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求导函数.y=(x+1)2(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=(a-1)x在(-∞,+∞)上为减函数,则a满足1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列命题:①若$\overrightarrow{a}$,$\overrightarrow{b}$共线,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则($\overrightarrow{a}-\overrightarrow{b}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$);②已知$\overrightarrow{a}$=2$\overrightarrow{e}$,$\overrightarrow{b}$=3$\overrightarrow{e}$,则$\overrightarrow{a}$=$\frac{3}{2}$$\overrightarrow{b}$;③若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$≠$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|;④△ABC中,AD是BC边上的中线,则$\overline{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,其中正确的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合M={x|x=2m,m∈Z},N={x|x=4n+2,n∈Z},则M?N.(填⊆,?,?,?,=)

查看答案和解析>>

同步练习册答案