【题目】在四棱锥
中,
平面
,且底面
为边长为2的菱形,
,
.
(Ⅰ)记
在平面
内的射影为
(即
平面
),试用作图的方法找出M点位置,并写出
的长(要求写出作图过程,并保留作图痕迹,不需证明过程和计算过程);
![]()
(Ⅱ)求二面角
的余弦值.
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)第(1)问,作图见解析,再利用射影定理求PM的长. (2) 以D为坐标原点,DA,DE,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz,利用向量法求二面角
的余弦值.
试题解析:
(1)取BC中点E,连接DE,PE,在
PDE内作DM
PE,垂足为M,
,则PM=
,
(2)以D为坐标原点,DA,DE,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz,如图,A(2,0,0),P(0,0,2),B(1,
,0),C(-1,
,0)
分别设平面PAB,平面PBC的法向量为
,则
,令
,令![]()
, 又二面角A-PB-C的大小为钝角
二面角A-PB-C的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.
![]()
(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);
(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某河流上的一座水力发电站,每年六月份的发电量
(单位:万千瓦时)与该河上游在六月份的降雨量
(单位:毫米)有关据统计,当
时,
;
每增加10,
增加5.已知近20年
的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(1)完成如下的频率分布表:近20年六月份降雨量频率分布表
![]()
(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
对任意
满足
,下面给出关于数列
的四个命题:①
可以是等差数列,②
可以是等比数列;③
可以既是等差又是等比数列;④
可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据![]()
,如表所示:
试销单价 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量 | q | 84 | 83 | 80 | 75 | 68 |
已知
,
.
(Ⅰ)求出
的值;
(Ⅱ)已知变量
,
具有线性相关关系,求产品销量
(件)关于试销单价
(元)的线性回归方程
;
(Ⅲ)用
表示用(Ⅱ)中所求的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.
(参考公式:线性回归方程中
,
的最小二乘估计分别为
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中a为实数.
(1)当a=-1时,求函数y=f(x)的零点;
(2)若f(x)在(-2,2)上为增函数,求实数a的取值范围;
(3)对于给定的实数a,若存在两个不相等的实数根
,
,(
<
且
≠0)使得f(
)=f(
),求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com