精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xOy中,已知抛物线C:x2=4y,点P是C的准线l上的动点,过点P作C的两条切线,切点分别为A,B,则△AOB面积的最小值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

分析 求导,根据导数的几何意义求得切线PA和PB的方程,求得直线AB的方程,且直线AB过定点F(0,1),根据三角形的面积公式,即可求得△AOB面积的最小值.

解答 解:如图所示:抛物线C:x2=4y,准线l的方程y=-1,设P(x0,-1),A(x1,y1),B(x2,y2),
由y=$\frac{1}{4}$x2,求导y′=$\frac{1}{2}$x,
切线PA的方程为y-x1=$\frac{1}{2}$x1(x-x1),即y=$\frac{1}{2}$x1x-y1
又切线PA过点P(x0,-1),-1=$\frac{1}{2}$x1x0-y1
整理得:x1x0-2y1+2=0,
同理切线PB的方程x2x0-2y2+2=0,
∴直线AB的方程为xx0-2y+2=0,
直线AB过定点F(0,1),
∴△AOB面积,S=$\frac{1}{2}$丨OF丨丨x1-x2丨=$\frac{1}{2}$丨x1-x2丨≥$\frac{1}{2}$×4=2,
∴当且仅当直线AB⊥y轴时取等号,
∴△AOB面积的最小值2,
故选B.

点评 本题考查抛物线的切线方程的求法,考查导数的几何意义,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一条渐近线与x轴的夹角为30°,那么双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等比数列{an}满足an+1+an=9•2n-1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n-1)an,数列{bn}的前n项和为Sn,若不等式Sn>kan+16n-26对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≤1}\\{x+\frac{4}{x}-3,}&{x>1}\end{array}\right.$,则f(x)的值域是(  )
A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xex
(Ⅰ)讨论函数g(x)=af(x)+ex的单调性;
(Ⅱ)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1],求整数m所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a<-2”是“函数y=ax+3在区间(-1,3)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题获得学分2分,便可通过考察.已知6道备选题中考生甲有4题能正确完成:考生乙每题正确完成的概率都是$\frac{2}{3}$,且每题正确完成与否互不影响.求:
(Ⅰ)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(Ⅱ)请你判断两考生的实验操作学科能力,比较他们能通过本次考查的可能性大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个交点为A,过A作x轴的垂线,垂足恰为该椭圆的焦点F,则该双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\frac{13}{4}$C.$\frac{9}{4}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在多面体ABCDEF中,底面ABCD为正方形,平面AED⊥平面ABCD,AB=$\sqrt{2}$EA=$\sqrt{2}$ED,EF∥BD
( I)证明:AE⊥CD
( II)在棱ED上是否存在点M,使得直线AM与平面EFBD所成角的正弦值为$\frac{\sqrt{6}}{3}$?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案