精英家教网 > 高中数学 > 题目详情
将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2,l1与l2平行的概率为P1,相交的概率为P2,则P2-P1的大小为
 
考点:几何概型
专题:
分析:本题是两个古典概型的问题,试验发生包含的事件是一颗骰子投掷两次,共有36种结果,使得两条直线平行的a,b的值可以通过列举做出,还有一种就是使得两条直线重合,除此之外剩下的是相交的情况,写出概率做出差.
解答: 解:由题意知本题是两个古典概型的问题,
试验发生包含的事件是一颗骰子投掷两次,第一次出现的点数记为a,
第二次出现的点数记为b,共有36种结果,
要使的两条直线?1:ax+by=2,?2:x+2y=2平行,
则a=2,b=4;a=3;b=6,共有2种结果,
当A=1,B=2时,两条直线平行,
其他33种结果,都使的两条直线相交,
∴两条直线平行的概率是
2
36

两条直线相交的概率是
33
36

∴两个概率之差是
31
36

故答案为:
31
36
点评:本题考查古典概型问题,考查两条直线的平行,相交和重合的充要条件,是一个综合题目,也是一个易错题,注意容易漏掉重合的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1的左、右焦点为F1,F2,左准线为l,P为椭圆上一点,PQ⊥l,垂足为Q.若四边形PQF1F2为平行四边形,则椭圆的离心率的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),M是双曲线上的一点,且满足
F1M
F2M
+2a2=0,则双曲线的离心率的取值范围是(  )
A、(1,
3
B、(
3
,+∞)
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
24
1x
,B=
2-2
-11
,若BA=
24
-1-2
,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为(  )
A、
2
2
B、
3
2
C、
3
-1
2
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-3|x-a|其中a∈R.
(1)当a=0时,方程f(x)=b+1恰有三个根,求实数b的值;
(2)若a>0,函数g(x)=x3+1-xf(x)在区间(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F,G分别为PB,BBC,AP的中点.
(Ⅰ)求证:平面EFG∥平面PCD;
(Ⅱ)若CD=PD=2,求三棱锥E-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,D、E分别是BC、AB的中点,P是△ABC(包括边界)内任一点,则
AD
EP
的取值范围是(  )
A、[-7,7]
B、[-8,8]
C、[-9,9]
D、[-10,O]

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求函数f(x)=2x+3x-7在区间[0,2]上的零点,取区间中点1,则下一个存在零点的区间是
 

查看答案和解析>>

同步练习册答案