精英家教网 > 高中数学 > 题目详情
3.过点P(2,-3)且垂直于直线x-2y+1=0的直线方程是2x+y-1=0.

分析 根据两直线垂直设出所求直线的方程,把点P坐标代入求出未知系数即可.

解答 解:设与直线x-2y+1=0垂直的直线方程为
2x+y+c=0,
又该直线过点P(2,-3),
∴2×2-3+c=0,
解得c=-1,
∴所求的直线方程是2x+y-1=0.
故答案为:2x+y-1=0.

点评 本题考查了两直线垂直的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}满足a5=a2+a3,a13=13.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{2\sqrt{{a}_{n}}}$,数列{bn}前n项和为Sn,证明:$\sqrt{{a}_{n+1}}$-1<Sn<$\sqrt{{a}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,a1=1,an•an-1=an-1+(-1)n(n≥2,n∈N*),则a3的值是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈R,若函数y=ex+ax,x∈R有小于零的极值点,则实数a的取值范围是(  )
A.(-∞,-1)B.(-1,+∞)C.(-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若数列{an}的前n项和Sn=$\frac{2}{3}$n2-$\frac{1}{3}$n   则数列中a3等于(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从数字0,1,2,3,4,5中任选3个数字,可组成没有重复数字的三位数共有(  )
A.60B.90C.100D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.
(Ⅰ) 若x=1,求该月甲、乙两户的水费;
(Ⅱ) 求y关于x的函数;
(Ⅲ) 若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解喜好体育运动是否与性别有关,某报记者随机采访50个路人,将调查情况进行整理后制成下表:
 年龄(岁)[15,25)[25,35)
 
[35,45)
 15
[45,55)
 
[55,65)
 
[65,75)
 
 频数 510  8 10 5 5
 喜好人数 4 6  6 3
(1)在调查的结果中,喜好体育运动的女性有10人,不喜好体育运动的男性有5人,请将下面的2×2列联表补充完整,并判断能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
  喜好体育运动 不喜好体育运动合计 
 男生  5 
 女生 10  
 合计   50
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不喜好体育运动的人数为X,求随机变量X的分布列和数学期望.
下面的临界值表供参考:
 P(K2≥k)0.15 0.10 0.05  0.025 0.010 0.005 0.001
2.072 2.706  3.841 5.024 6.6357.879  10.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.离散型随机变量ξ的分布列为:
ξ123
pp1p2$\frac{1}{4}$
且Eξ=2,则p1=$\frac{1}{4}$;p2=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案