精英家教网 > 高中数学 > 题目详情
17.在数列{an}中,a1=2,若平面向量$\overrightarrow{b_n}=(2,n+1)$与$\overrightarrow{c_n}=(-1+{a_{n+1}}-{a_n},{a_n})$平行,则{an}的通项公式为an=$\frac{(n+16)(n-1)}{6}$+2.

分析 平面向量$\overrightarrow{b_n}=(2,n+1)$与$\overrightarrow{c_n}=(-1+{a_{n+1}}-{a_n},{a_n})$平行,可得2an=(n+1)(-1+an+1-an),整理为:(n+3)an+(n+1)=(n+1)an+1,利用递推关系可得:(an+2-an+1)+(an-an-1)=2(an+1-an),转化为等差数列,再利用累加求和方法、等差数列的求和公式即可得出.

解答 解:∵平面向量$\overrightarrow{b_n}=(2,n+1)$与$\overrightarrow{c_n}=(-1+{a_{n+1}}-{a_n},{a_n})$平行,
∴2an=(n+1)(-1+an+1-an),整理为:(n+3)an+(n+1)=(n+1)an+1
n≥2时,(n+2)an-1+n=nan,相减可得:(2n+3)an+1-(n+2)an-1=(n+1)an+1
∴(2n+5)an+1+1-(n+3)an=(n+2)an+2
相减可得:3an+1-3an=an+2+an-1
∴(an+2-an+1)+(an-an-1)=2(an+1-an),
又a1=2,∴a2=5,a3=$\frac{25}{3}$.
∴数列{an+1-an}是等差数列,首项为3,公差为$\frac{1}{3}$.
∴an+1-an=3+$\frac{1}{3}(n-1)$=$\frac{n+8}{3}$.
∴an=$\frac{n+7}{3}$+$\frac{n+6}{3}$+…+$\frac{1+8}{3}$+2
=$\frac{1}{3}×\frac{(n-1)(9+n+7)}{2}$+2=$\frac{(n+16)(n-1)}{6}$+2.
故答案为:an=$\frac{(n+16)(n-1)}{6}$+2.

点评 本题考査了累加求和方法、等差数列的求和公式、数列递推关系、向量共线定理,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数y=sin(ωx-$\frac{π}{3}$)cos(ωx-$\frac{π}{3}$)的周期为2,且ω>0,则ω=(  )
A.1B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列四个命题:
①若“p∧q”是假命题,则p,q都是假命题;
②在频率分布直方图中,众数左边和右边的直方图面积相等;
③在回归直线$\widehat{y}$=-0.5x+3中,当解释变量x每增加一个单位时,预报变量$\widehat{y}$平均减少0.5个单位;
④y=|sin(x+1)|的最小正周期是π.
其中正确的命题序号是(  )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有A,B,C,D,E,F共6个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运A箱,卡车乙不能运B箱,此外无其他任何限制:要把这6个集装箱分配给这3台卡车运送,则不同的分配方案的种数42(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,点D是BC的中点,点E是AC的中点,点F在线段AD上并且AF=2DF,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{EF}$=(  )
A.$\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{2}$$\overrightarrow{b}$C.$\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{3}$$\overrightarrow{b}$D.$\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设k1,k2分别是两条直线l1,l2的斜率,则“l1∥l2”是“k1=k2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.平行四边形ABCD中,M为BC的中点,若$\overrightarrow{AB}=λ\overrightarrow{AM}+μ\overrightarrow{DB}$,则λμ=$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=(\frac{x^2}{2}-kx)lnx+\frac{x^2}{4}$.
(Ⅰ)若f(x)在定义域内单调递增,求实数k的值;
(Ⅱ)若f(x)的极小值大于0,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=log3|x-t|是偶函数,记$a=f({{{log}_{0.3}}4}),b=f({\sqrt{π^3}}),c=f({2-t})$则a,b,c的大小关系为(  )
A.a<c<bB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案