精英家教网 > 高中数学 > 题目详情
在等腰三角形ABC中,已知AC=BC=
5
,点D,E,F分别在边AB,BC,CA上,且AD=DB=EF=1.若
DE
DF
25
16
,则
EF
BA
的取值范围是
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:如图所示,A(1,0),B(-1,0),C(0,2).设
BE
BC
,可得
DE
=
DB
BC
=(λ-1,2λ).
同理可得
DF
=(1-μ,2μ).由|
EF
|
=1,可得
(λ+μ-2)2+4(λ-μ)2
=1,化为5(λ22)-6λμ-4(λ+μ)+3=0.由于
DE
DF
25
16
,可得(λ-1)(1-μ)+4λμ≤
25
16
.可得15(λ+μ)2+4(λ+μ)-32≤0,解出λ+μ的范围,由于1≥λ,μ
1
2
,可得1≤λ+μ≤
4
3
.即可得出
EF
BA
=2(2-λ-μ)的取值范围.
解答: 解:如图所示,
A(1,0),B(-1,0),C(0,2).
BE
BC
,则
DE
=
DB
BC
=(-1,0)+λ(1,2)
=(λ-1,2λ).
同理可得
DF
=(1-μ,2μ).
|
EF
|
=1,∴
(λ+μ-2)2+4(λ-μ)2
=1,
化为5(λ22)-6λμ-4(λ+μ)+3=0.
DE
DF
25
16

(λ-1)(1-μ)+4λμ≤
25
16

化为3λμ+λ+μ≤
41
16

∴15(λ+μ)2+4(λ+μ)-32≤0,
解得-
8
5
≤λ+μ≤
4
3

∵1≥λ,μ
1
2

解得1≤λ+μ≤
4
3

EF
BA
=2(2-λ-μ)的取值范围是 [
4
3
,2]

故答案为:[
4
3
,2]
点评:本题考查了向量的坐标运算、数量积运算、不等式的解法与性质,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若某几何体的三视图如图,该几何体的体积为2,则俯视图中的x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=4sin(2x+
π
3
)(x∈R),有下列论断:
①函数y=f(x)的表达式可改写为y=4cos(2x-
π
6
);
②函数y=f(x)的最小正周期为2π;
③函数y=f(x)的图象关于点(-
π
6
,0)对称;
④函数y=f(x)的图象可由y=4sin2x向左平移
π
3
个单位得到;
⑤函数y=f(x)在区间[-
11π
12
,-
12
)上单调递减.
其中正确的是
 
.(将你认为正确的论断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线y=x2-1,直线x=2和x轴所围成的图形的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设(5x-
1
x
n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=56,则展开式中常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出一个凸10边形及其所有对角线,在以该凸10边形的顶点及所有对角线的交点为顶点的三角形中,至少有两个顶点是该凸10边形顶点的三角形有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=k,∠AOB=
3
,点C在∠AOB内,
OC
OA
=0,若
OC
=2m
OA
+m
OB
,|
OC
|=2
3
,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logm(x+1)且m>1,a>b>c>0,则
f(a)
a
f(b)
b
f(c)
c
的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x>1},N={x|x2≤4},则M∩N=(  )
A、(1,2)
B、[1,2]
C、(1,2]
D、[-2,+∞)

查看答案和解析>>

同步练习册答案