精英家教网 > 高中数学 > 题目详情
20.已知x、y的取值如表所示,如果y与x呈线性相关,且线性回归方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\frac{13}{2}$,则b=(  )
x234
y645
A.$\frac{1}{3}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

分析 计算样本中心,代入回归方程得出b.

解答 解:$\overline{x}=\frac{2+3+4}{3}=3$,$\overline{y}=\frac{6+4+5}{3}=5$,
∴5=3$\stackrel{∧}{b}$+$\frac{13}{2}$,解得$\stackrel{∧}{b}$=-$\frac{1}{2}$.
故选B.

点评 本题考查了线性回归方程经过样本中心的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设不等式x2+y2≤1表示的平面区域为D,在区域D内随机取一个点,则|x|+|y|≥1的概率是(  )
A.$\frac{π-1}{π}$B.$\frac{2}{π}$C.$\frac{1}{π}$D.$\frac{π-2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F1,F2为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左,右焦点,P,Q为双曲线C右支上的两点,若$\overrightarrow{P{F_2}}$=2$\overrightarrow{{F_2}Q}$,且$\overrightarrow{{F_1}Q}$•$\overrightarrow{PQ}$=0,则该双曲线的离心率是(  )
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x2-2x)lnx+ax2+2.
(1)当a=-1时,求f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,设函数g(x)=f(x)-x-2,且函数g(x)有且仅有一个零点,若e-2<x<e,g(x)≤m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某公益活动为期三天,现要为6名志愿者安排相应的服务工作,每人工作一天,且第一天需1人工作,第二天需2人工作,第三天需3人工作,则不同的安排方式有60种.(请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)5.26.57.07.58.8
根据上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=0.76,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,据此估计,该社区一户收入为15万元家庭年支出为(  )万元.
A.10.8B.11.8C.12.8D.9.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,直径AB上有异于A,B的四个点D1,D2,D3,D4,则:
(1)以这12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?
(2)以这10个点(不包括A,B)中的3个点为顶点,可作出多少个三角形?其中含点C1的有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x、y取值如表:
x014568
y1.3m5.66.17.49.3
从所得的散点图分析可知:y与x线性相关,且$\widehaty$=0.95x+1.45,则m=(  )
A.1.5B.1.55C.3.5D.1.8

查看答案和解析>>

同步练习册答案