分析 利用函数y=Asin(ωx+φ)的图象变换规律,利用三角函数的图象,可得sin(2α+θ)=-$\frac{2\sqrt{5}}{5}$,sin(2β+θ)=-$\frac{2\sqrt{5}}{5}$,从而得到2α+θ=π+θ,2β+θ=2π-θ,进而得到cos(α-β)=cos(θ-$\frac{π}{2}$)=sinθ的值.
解答 解:函数$f(x)=2sin(2x+ϕ)(|ϕ|<\frac{π}{2})$的图象向左平移$\frac{π}{6}$个单位长度后,得到y=2sin(2x+$\frac{π}{3}$+Φ)的图象;
∵对应的函数是奇函数,∴$\frac{π}{3}$+Φ=kπ,k∈Z,即Φ=kπ-$\frac{π}{3}$,∴Φ=-$\frac{π}{3}$,即f(x)=2sin(2x-$\frac{π}{3}$).
∵函数$g(x)=(2+\sqrt{3})cos2x$,关于x的方程f(x)+g(x)=-2在[0,π)内有两个不同的解α,β,
即2sin(2x-$\frac{π}{3}$)+(2+$\sqrt{3}$)cos2x=-2在[0,π)内有两个不同的解α,β,
即 $\frac{1}{2}$sin2x+cos2x=-1 在[0,π)内有两个不同的解α,β,
即$\frac{\sqrt{5}}{2}$sin(2x+θ)=-1(其中,cosθ=$\frac{\sqrt{5}}{5}$,sinθ=$\frac{2\sqrt{5}}{5}$,θ为锐角)在[0,π)内有两个不同的解α,β,
即方程sin(2x+θ)=-$\frac{2\sqrt{5}}{5}$ 在[0,π)内有两个不同的解α,β.
∵x∈[0,π),∴2x+θ∈[θ,2π+θ),∴sin(2α+θ)=-$\frac{2\sqrt{5}}{5}$,sin(2β+θ)=-$\frac{2\sqrt{5}}{5}$,
∴sinθ=-sin(2α+θ)=-sin(2β+θ),∴2α+θ=π+θ,2β+θ=2π-θ,
∴2α-2β=-π+2θ,α-β=θ-$\frac{π}{2}$,∴cos(α-β)=cos(θ-$\frac{π}{2}$)=sinθ=$\frac{2\sqrt{5}}{5}$,
故答案为:$\frac{{2\sqrt{5}}}{5}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,诱导公式,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{2}$ | B. | 2 | C. | 2+$\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 53 | B. | 59 | C. | 66 | D. | 71 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{{e}^{2}}$ | B. | 2ln2 | C. | $\frac{1}{e}$ | D. | $\frac{3}{2}$ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com