精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn,且满足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1(n∈N*),则Sn=4n

分析 由已知数列递推式可得$\frac{{S}_{n+1}}{{S}_{n}}=4$,又S1=a1=4,则数列{Sn}构成以4为首项,以4为公比的等比数列,再由等比数列的通项公式求得Sn

解答 解:由Sn+Sn+1=$\frac{5}{3}$an+1,得Sn+Sn+1=$\frac{5}{3}$(Sn+1-Sn),即$\frac{{S}_{n+1}}{{S}_{n}}=4$,
又S1=a1=4,
∴数列{Sn}构成以4为首项,以4为公比的等比数列,
则${S}_{n}=4×{4}^{n-1}={4}^{n}$.
故答案为:4n

点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{1-x,0<x<1}\\{\sqrt{x-1},x≥1}\end{array}\right.$,若a<b<c,f(a)=f(b)=f(c),则实数a+3b+c的取值范围是(-∞,$\frac{11}{4}-ln2$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,且2Sn=3an-2n.
(I)证明:数列{an+1}为等比数列;
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点P为矩形ABCD所在平面外一点,AC∩BD=O,点M为PB的中点,求证:MO∥面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义域为[a-2,2a-1]的奇函数f(x)=x3-sinx+b+1,则f(a)+f(b)的值为(  )
A.0B.1C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某省巡视组将4名男干部和2名女干部分成两小组,深入到A、B两城市进行巡视工作,若要求每组最多4人,且女干部不能单独成组,则不同的选派方案共有(  )
A.40种B.48种C.60种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}中,若Sn=n4+9n-3,则a2=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是定义域为R,最小正周期为3π的函数,且在区间(-π,2π]上的表达式为f(x)=$\left\{\begin{array}{l}{sinx(0≤x≤2π)}\\{cosx(-π<x<0)}\end{array}\right.$,则f(-$\frac{308π}{3}$)+f($\frac{601π}{6}$)=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.书架上有三本数学书和两本语文书,某同学两次分别从书架各取出一本书,取后不放回,若第一次从书架取出一本数学书记为事件A,第二次从书架取出一本数学书记为事件B,那么第一次取得数学书的条件下第二次也取得数学书的概率p(B|A)的值是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案