分析 由已知数列递推式可得$\frac{{S}_{n+1}}{{S}_{n}}=4$,又S1=a1=4,则数列{Sn}构成以4为首项,以4为公比的等比数列,再由等比数列的通项公式求得Sn .
解答 解:由Sn+Sn+1=$\frac{5}{3}$an+1,得Sn+Sn+1=$\frac{5}{3}$(Sn+1-Sn),即$\frac{{S}_{n+1}}{{S}_{n}}=4$,
又S1=a1=4,
∴数列{Sn}构成以4为首项,以4为公比的等比数列,
则${S}_{n}=4×{4}^{n-1}={4}^{n}$.
故答案为:4n.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40种 | B. | 48种 | C. | 60种 | D. | 72种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com